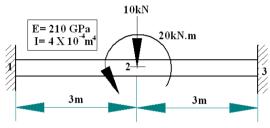
Reg. No.

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

VII SEMESTER B.TECH (AERONAUTICAL ENGINEERING) END SEMESTER EXAMINATIONS, DEC 2015\ JAN 2016

SUBJECT: FINITE ELEMENT METHOD [AAE 405]


REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- ✤ Missing data may be suitable assumed.
- **1A.** For the beam shown in Figure 1, determine the displacements and the slopes (05) at the node2.

1B. For the beams shown in Figure2, determine the displacements and the (05) slopes at the nodes.

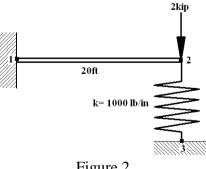
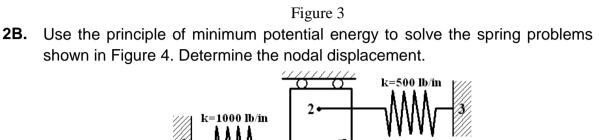
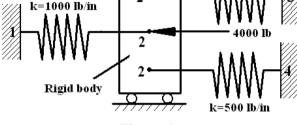



Figure 2


2A. For the beams shown in Figure 3, determine the displacements and the (05) slopes at the nodes. Given: E= 30X10⁶ psi, I=100 in⁴.

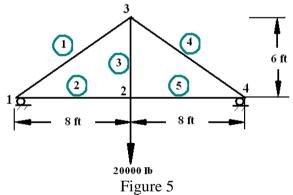
2

1

20ft

1000 lb

3

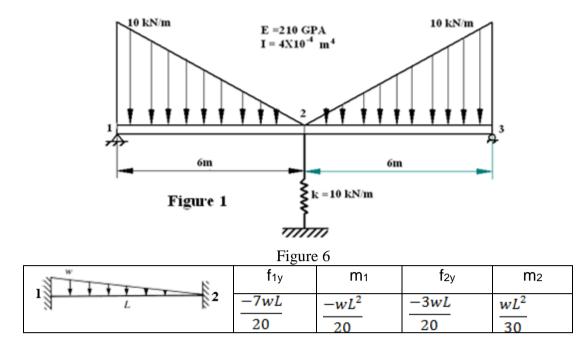

2

0.5 in

20 ft

Figure 4

3A. For the truss shown in Figure 5, use symmetry to determine the **(07)** displacements of the nodes and the stresses in each element. All elements have $E= 30X10^6$ psi. Elements 1, 2, 4, and 5 have A =10 in² and element 3 has A =20 in².



3B. Briefly explain Co-ordinate systems used in FEM.

(03)

(05)

4. For the beams shown in Figure 6, determine the nodal displacements and **(10)** slopes, the forces in each element, and the reactions.

5. For the plane trusses shown in Figure 7, determine the horizontal and vertical (10) displacements of node 1 and the stresses in each element. All elements have E = 210 GPa and $A = 4X \ 10^{-4} \ m^2$.

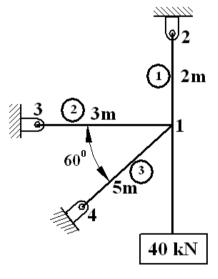


Figure 7

6. For the plane strain elements shown in Figure 8, the nodal displacements (10) are given as

u1 = 0.001 in: v1 = 0.005 in: u2 = 0.001 in: v2 = 0.0025 in: u3 = 0.0 in: v3 = 0.0 in:

Determine the stiffness and element stresses $\sigma_{x'}\sigma_{y'}\tau_{xy'}\sigma_{1}$, and σ_{2} and the principal angle θ_{p} . Let E = 30X10⁶ psi and ϑ = 0.25, and use unit thickness for plane strain. All coordinates are in inches.

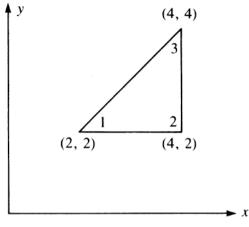


Figure 8