Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

VII SEMESTER B.TECH (AUTOMOBILE ENGINEERING) END SEMESTER EXAMINATIONS, NOV / DEC 2015

SUBJECT: TRIBOLOGY [AAE 475]

REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ANY FIVE FULL** the questions.
- * Missing data may be suitable assumed.

1A.	What is Terotechnology? What does this term relate to?	2M
1B.	Show that journal speed is twice the speed of journal center of a rotating journal bearing. Draw a clear diagram to derive it.	3M
1C.	Derive the following expressions of hydro-dynamically lubricated Journal bearing i. Bearing Geometry ii. Pressure Distribution	5M
2A.	What are the different functions of a lubricant	2M
2B.	Write the different behaviours of Non-Newtonian liquids	3M
2C.	What are Quasi-Solid Lubricants? On which basis are they assorted? Give some salient features of assorted quasi-solid lubricants.	5M
3A.	What is the relation of viscosity with change in pressure? How does a lubricant fail functionally due to change in pressure?	2M
3В.	A car owner removes water using cotton cloth with a speed of 15 cm/s. He is applying a tangential force of 30 dynes. The thickness between the cloth and the car body is 0.9mm. If a soap solution (cleaning agent) spills over the car body which is having a viscosity of 0.58 stokes, what is the force required to maintain the same speed. Viscosity of water is 0.01 Stoke.	3M
3C.	Derive the following expressions of a Flat hydrostatic Pad Bearing i. Pressure Distribution ii. Load Capacity	5M
4A.	What is PAO and where is it used? Give an example of it along with chemical formula.	2M
4B.	Classify different types of lubricants and state few advantages of synthetic oils	3M

AAE 475 Page 1 of 2

- 4C. A billet with a square cross-section is extruded, which is 100 mm long and 20mm in 5M dimension in each side. The extrusion ratio is 3.5. The strength of co-efficient is found to be 300 MPa and the strain hardening component is 0.20. Johnsons formula can be used the strain. The factors a=0.8 and b =1.2. Determine the pressure applied to the billet as the ram is moved. Find the pressure at a regular interval of 25mm and plot a graph to shown the relationship between ram pressure and ram stroke.
- 5A. What is Springback and give the formula to determine it 2M
- 5B. What is viscosity Index? Give a brief account on the selection of reference oils 3M
- 5C. Cold forging process is carried out on a square workpiece, which is possessing a dimension of initial height as 90 mm and a side as 55 mm. The material which is exposed to this process has a flow curve defined by K = 250MPa and strain-hardening exponent as 0.16. The co-efficient of friction is assumed to be 0.2 and the initial strain to be assumed is 0.002. Determine the forging force as the process commences and at a height of 75mm.
- 6A. Derive Reynolds two-dimension equation with neat diagram. State the assumptions 10M made while deriving the equation.

Can use Leibnitz method for Integration

$$\int_{a}^{b} \frac{\partial u(y,x)}{\partial x} dy = \frac{d}{dx} \int_{a}^{b} u \, dy - u(b,x) \frac{db}{dx} + u(a,x) \frac{da}{dx}$$

AAE 475 Page 2 of 2