|--|

प्रज्ञानं ब्रह्म Manipal INSPIRED BY LIFE

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

VII SEMESTER B.TECH (CHEMICAL ENGINEERING)

MAKE UP EXAMINATIONS, JAN 2016

SUBJECT: ADVANCED PROCESS DYNAMICS AND CONTROL [CHE 443]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

* Answer ANY FIVE FULL questions.

✤ Missing data may be suitably assumed.

1A	Distinguish between Feedback control and Feedforward control schemes with suitable example	08
1B.	Discuss the Cascade control strategy with an example.	06
1C.	Explain the application of soft sensor in process industry with an example.	06
2A.	How can the RGA be obtained and used for loop pairing in the presence of process models.	06
2B.	The following incomplete RGA was determined experimentally (after very long and tedious experiments) for a 4x4 system with outputs y_1, y_2, y_3, y_4 to be paired with the inputs m_1, m_2, m_3 , and m_4 . What input/output pairing is recommended? $\begin{bmatrix} ? & 0.15 & ? & -0.09 \\ -0.01 & ? & 0.29 & 1.15 \\ ? & 3.31 & 0.27 & ? \\ 0.22 & ? & ? & 1.84 \end{bmatrix}$ Obtain the RGA for this system and use it to recommend loop pairing.	06
2C	Explain the detailed procedure of designing de-coupler for 2x2 system. You are expected to show the block diagram of 2x2 system with decoupler.	08
3A	Find the Z-transform of the a) unit step function i.e., $x(t) = \begin{cases} 1(t) & 0 \le t \\ 0. & t < 0 \end{cases}$ b) Unit Ramp function i.e., $x(t) = \begin{cases} t, & 0 \le t \\ 0. & t < 0 \end{cases}$	08

3B.	Consider the following system	12
	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	
	$x(k+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -10 & -10 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u(k) + w(k)$	
	$y(k) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(k) + v(k)$	
	It is desired to develop a state feed feedback control law of the form	
	u(k) = -Kx(k)	
	Find the matrix 'K' such that the poles of $(\Phi - \Gamma K)$ are placed at	
	$s_{1,2} = -3 \pm 4j; \ s_3 = -10$	
4A.	Find $y(k)$ for $k=0,1,2,3,4$ when $y(z)$ is given by,	10
	$y(z) = \frac{10z^{-1} + 10z^{-2}}{1 - 1.5z^{-1} + 5z^{-2} + z^{-3}}$	
4B.	$\frac{1-1.52}{1-1.52} + \frac{52}{1-2}$ Consider AR model of the form	10
	(1) 1 (1)	-
	$v(k) = \frac{1}{(1 - 0.5q^{-1})(1 - 0.25q^{-1})}e(k)$	
	Using long division, convert the model into moving average(MA) form	
5A.	Develop a parameter estimation problem for Impulse response model of	08
5A.	Develop a parameter estimation problem for Impulse response model of $\frac{N}{N}$	00
	the form, $y(k+1) = y(0) + \sum_{i=1}^{N} h_i u(k-i+1)$	
	Where h_i -Impulse coefficients	
5B.	The characteristic equation for a certain closed loop digital control system	12
	is given as:	
	$1 + 0.4z^{-1} - 0.69z^{-2} - 0.256z^{-3} + 0.032z^{-4} = 0$	
	Using Jury's method determine whether this system is stable or not.	
6A.	Distinguish between grey box and black box model with an example	04
6B.	Consider fourth order system as	08
	$ba^2 + ba + b$	
	$y(k) = G(q)u(k) = \frac{b_1q^2 + b_2q + b_3}{q^3 + a_1q^2 + a_2q + a_3}$, Obtain the state space	
	realization (controllable canonical) of the form	
	$x(k+1) = \Phi x(k) + \Gamma u(k)$	
	y(k) = Cx(k)	
	Such that, $C[qI - \Phi]^{-1} = G(q)$.	
6C.	Discuss the Controllability and Observability concept in general terms and how is obtained from model equations.	08