	Reg. No.										
--	----------	--	--	--	--	--	--	--	--	--	--

प्रज्ञानं ब्रह्म Manipal INSPIRED BY LIFE

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

VII SEMESTER B.TECH (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: ADVANCED PROCESS DYNAMICS AND CONTROL [CHE 443]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- ✤ Missing data may be suitably assumed.

1A.	Design a controller incorporating a smith predictor for a time delay process.		
1B.	Why do you think the performance of the smith predictor scheme will be sensitive to the modelling errors?		
1C.	Discuss the different adaptive control strategy.		
2A.	How can the RGA be obtained and used for loop pairing in the absence of process models.		
2B.	The transfer function for a 2x2 subsystem extracted from the 3x3 model for an industrial de-ethanizer is as follows: $G(s) = \begin{bmatrix} \frac{1.318e^{-2.5s}}{20s+1} & \frac{-e^{-4s}}{3s} \\ \frac{0.038(182s+1)}{(20s+1)(10s+1)(6.5s+1)} & \frac{0.36}{s} \end{bmatrix}$ Obtain the RGA for this system and use it to recommend loop pairing.	08	
2C.	Explain the detailed procedure of designing de-coupler for 2x2		

3A.	Consider the following system $x(k+1) = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} x(k) + \begin{bmatrix} -2 \\ 2 \end{bmatrix} u(k) + w(k)$ $y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k) + v(k)$ It is desired to develop a state feed feedback control law of the form $u(k) = -Kx(k)$ Find the matrix 'K' such that the poles of $(\Phi - \Gamma K)$ are placed at $\lambda = 0.25 \pm 0.25 j$	12
3B.	First order system expressed using a difference equation is as follows, $y(k+) + a_1 y(k-1) = b_1 u(k-1)$ Develop its pulse transfer function and Calculate the response (y(k), k=0,1,2,3,4) for unit step input (Given a ₁ =-0.368 and b ₁ =1.264) using z-transform	08
4 A .	Define a Final value and Initial value theorem of Z-transform. And find the value of y(0) if the z-transform of y(k) is given as $Y(z) = \frac{(1 - e^{-T})z^{-1}}{(1 - z^{-1})(1 - e^{-T}z^{-1})}$	04
4B.	Consider an ARMA model of the form y(k) = -ay(k-1) + e(k) + ce(k-1) Which equivalent to $y(k) = H(q)e(k) = \frac{1+cq^{-1}}{1+aq^{-1}}e(k)$ e(k) is a sequence of independent normal random variables. Develop one step ahead predictor $\hat{y}(k+1 k)$, which uses only the current and the past measurements of y.	08
4C.	Solve the following difference equation using z-transform method. y(k+2)+3y(k+1)+2y(k) = 0; Given, $y(0) = 0; y(1) = 1.$ Obtain y(k) series for k=0,1,2,3,	08
5A.	The characteristic equation for a certain closed loop digital control system is given as: $1+0.3z^{-1}-0.5z^{-2}-0.5z^{-3}+0.32z^{-4}=0$ Using Jury's method determine whether this system is stable or not.	12

CHE 443

5B.	Consider FIR model of the form $y(k) = h_1 u(k-1) + \dots + h_N u(k-N) + v(k)$ Show that least square estimates of impulse response coefficients are given by equation $\hat{\theta} = \left[\varphi(k)\varphi(k)^T\right]^{-1}\varphi(k)y(k)$ Where $\varphi(k) = \left[u(k-1)\dots u(k-N)\right]^T$ $\hat{\theta} = \left[\hat{h}_1,\dots,\hat{h}_N\right]^T$	08
6A.	Consider fourth order system as $y(k) = G(q)u(k) = \frac{b_1q^3 + b_2q^2 + b_3q + b_4}{q^4 + a_1q^3 + a_2q^2 + a_3q + a_4}, \text{ Obtain the state}$ space realization (controllable canonical) of the form $x(k+1) = \Phi x(k) + \Gamma u(k)$ $y(k) = Cx(k)$ Such that, $C[qI - \Phi]^{-1} = G(q)$.	08
6B.	Distinguish between an open loop observer and Luenberger observer.	06
6C.	Discuss the working principle of model predictive control strategy.	06