Dee Me					
Reg.no.					

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY

SEVENTH SEMESTER B. TECH. CHEMICAL ENGINEERING END SEMESTER EXAMINATION NOV 2015

SUBJECT: P.E. I: AIR POLLUTION MONITORING AND CONTROL (CHE 415)

Time: 3 HOURS

Max.Marks: 100

Note: Answer **ANY FIVE FULL** questions Each question carries 20 Marks

1 A	Draw a neat self-explanatory diagram of different phases in establishment of	6
	a plant monitoring system.	
1 B	Describe the different methods of classifying air pollutants	6
1 C	Discuss the primary parameters in the meteorological information required	8
	for designing monitoring network.	

2 A	Explain any 4 particulate pollutant sampling methods.	10
2 B	Explain the principle and working of gas chromatography for the analysis of	10
	a mixture of gaseous pollutants?	

3	What are the three approaches to NOx control? Describe control methods	20
	under each approach. How would you evaluate and choose among these	
	methods?	

4 A	Derive an expression for cut size diameter of a particle in a gravitational	5
	settling chamber from first principles.	
4 B	Explain the principle and working of a differential mobility particle size	5
	analyser with a neat diagram.	
4 C	Why is turbulence important in the combustion zone in a flare? How is	10
	turbulence achieved?	

5 A	What are the disadvantages of flares? How are they overcome in an	5
	incinerator?	
5 B	It is observed in a hydrocyclone, for coal beneficiation, that coal particles leave via the inner vortex from the top exit. While in a cyclone for particulate matter removal, the coal particles leave from the bottom exit. Give reasons for this anomaly.	5
	Please Turn Over	

5 C	Carbon sequestration involves capture of CO ₂ using three approaches-	10
	before, during and after combustion. Describe each approach. How would	
	you evaluate and choose among the three?	

6	A steel plant located 1 km outside the western edge of a city has a smelter	20
	with a stack 150 m high.	
	The stack diameter is 20 m. Stack gas temperature is 77°C. Stack gas	
	velocity is 10 m/s. Flue gas is released into the ambient air which is at 32° C.	
	Density of flue gas is 1.2 kg/m^3 .	
	Wind is blowing eastward at a speed of 3 m/s. It is a sunny day (strong solar	
	radiation).	
	Assume that the pollutant concentration at the plume centerline is blown into	
	the city whose dimensions are 3 km northwards and 4 km eastwards. Given,	
	emission density in the city is $5*10^{-4}$ g/s.m ² and the mixing height of the	
	city is 400 m.	
	Considering the entire city to be enclosed in a box and that fixed box model	
	is applicable, what is the concentration of pollutant in the city?	