Reg.No.					

MANIPAL UNIVERSITY

Seventh Semester B.Tech. (Chemical Engineering) END SEMESTER EXAMINATION – Nov/Dec 2015 Elective (II): INDUSTRIAL WASTEWATER ENGINEERING (CHE 427)

Time: 3 hrs Max Marks: 100

- Answer any FIVE full questions and all questions carry equal marks.
- Missing data, if any, may be assumed suitably.

1A	A mechanically cleaned bar screen has bars of 8 mm thick and 30 mm clear			
	spaces between the bars. If the flow rate is 0.20 m ³ /s, velocity through the			
	bars is 0.90 m/s, determine the approach velocity, head loss through the			
	screen and effective cross-sectional area.			
1B	Explain the physical, chemical and biological characteristics of wastewater	(5 marks)		
1C.	Just below the point where a continuous discharge of pollution mixes with a			
	river, the BOD is 10.9 mg/l and DO is 7.6 mg/l. The river and waste mixture			
	has a temperature of 20°C, a deoxygenation constant of 0.20 day-1, an			
	average flow speed of 0.30 m/s and an average depth of 3.0 m.			
	(i) Find the time and distance downstream at which the oxygen deficit is			
	a maximum	(8 marks)		
	(ii) Find the minimum value of DO			
2A.	An Activated sludge process system is to be designed to treat a wastewater			
	flow of 5 m ³ /min. BOD ₅ of settled wastewater is 200 mg/l, net effluent			
	BOD ₅ of 30 mg/l and suspended solid of 30 mg/l. Assume Y = 0.65, θ_c = 10	(8 marks)		
	days. Find (i) the reactor volume (ii)Quantity of sludge that must be wasted			
	each day (iii)Sludge wasting rate (iv) F/M ratio.			
2B.	Design a biodisc (Rotating biological contactor) for 600 persons to remove			
	90% of the BOD of 170 mg/l at the rate of 160 lpcd. Assume loading rate as			
	10 gm/m ³ .day and volume of the tank as 40 m ³ . Make the necessary check	(8 marks)		
	for the efficiency using K_a as 2.3.			
2C.	Explain the following terminologies:			
	(i)Organic loading (ii) Biological solids retention time	(4 marks)		
3A.	What are the major problems encountered in ASP systems?	(6 marks)		
3B.	Design a stabilization pond for the following:			
	Population = 5000			
	$BOD_5 = 54 \text{ g/capita/day}$			
	Wastewater production= 200lpcd			
	Minimum and maximum solar radiation = 110 Langley and 225 Langley	(10 marks)		
	Sky Clearance Factor = 85%			
	Conversion efficiency = 6%			
	Energy required for algae = 6 kcal/gm			

3C.	Show with a flow diagram the combined process of secondary treatment					
	with contact filtration, carbon adsorption and reverse osmosis.					
4A.	A municipal wastewater having a BOD of 250 g/m ³ is to be treated by a two stage trickling filter. The desired effluent quality is 25 g/m ³ of BOD. If both of the filter depth are to be 1.83 m and the recirculation ratio is 2:1. Find the required trickling filter diameter. Data are given below: Flow rate = 7570 m ³ /day, Wastewater temperature = 20°C and E ₁ = E ₂					
4B.	Design a facultative aerated lagoon to serve 20000 persons with 50 gm/capita/day of BOD, Effluent BOD = 30 mg/l. Assume k _a at 20°C as 1 day ⁻¹ and design temperature of 25°C. Calculate number of aerators at a capacity of 1.75 kg of O ₂ /hr/HP with an efficiency of 75%.					
5A.	What are the important operating parameters of anaerobic digestion process					
	and explain them?					
5B.	Explain Anaerobic Contact process and UASB with a neat flow diagram?					
6A.	Determine the liquid volume before and after digestion and the percentage reduction for 300 kg on dry basis of primary sludge with the following characteristics:					
		Primary sludge	Secondary/Digested sludge			
	% of solids	5	10			
	Volatile matter(%)	50	60			
	Specific gravity of fixed solids	2.5	2.5			
	Specific gravity of volatile solids	1.0	1.0	(8 marks)		
6B.	Explain the recent dev Osmosis.	elopments in membran	e filtration and Reverse	(12 marks)		