Reg. No.					
----------	--	--	--	--	--

Manipal Institute of Technology, Manipal

VII SEMESTER B.TECH (CHEMICAL ENGINEERING) END SEMESTER (MAKE-UP) EXAMINATION, DEC 2015/JAN 2016 SUBJECT: OIL & GAS RESERVOIR ENGINEERING [CHE 411] REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

	Γ				In	structi	ons to	Candie	dates:					
			✤ An	swer A	NY FIV	E FUL	L the qu	uestions						
			✤ Mi	ssing da	ita may	be suita	ble assu	imed.						
1A.	Desc	cribe hov	w you c	can estir	nate the	hydroc	arbon v	olumes	from ge	ologica	l data.			
1 B .	Describe the ways to determine the Z as a function of pressure.											1		
2A.	Deri	ve the e	xpress	ion for	gas rec	overy fa	actor (C	G _P /G) fo	r volun	netric d	epletion	reserve	oirs wh	ich
	inclu	udes the	effects	of conr	ate wate	er expar	nsion an	d pore v	volume	reductio	on.			t
2B.	Describe the phase behavior of different reservoir fluids with neat schematics.													
3A.	The stb c a) W b) If calcu a gas c) If	oil and g oil/day ar /hat is th f the ave ulate the s rate of the den	gas rate nd y sca e corre erage re daily u 1.875 l sity of	es, meas f gas/da espondir eservoir undergro MMscf/ the oil	sured at y. g under pressur ound wir day. Fie at stand	a partic ground e at the thdrawa ld PVT ard con	withdra e time t l corres parame ditions	ne durin wal rate he abov ponding ters are is 58.2	g the p e in rese e meas g to an o given b lb/cu.ft	roducin, rvoir ba urement bil produ elow. and the	g life of urrels/da ts are m uction of gas gra	y? ade is 2200 s vity is (voir are 2000 ps tb/day a 0.76 (ai	r =
	1), c	alculate	the oil	pressur	e gradie	nt in the	e reservo	oir at 28	00 psia			-		1
Pro	essure, psia	4000	3500	3330	3000	2700	2400	2100	1800	1500	1200	900	600	30
В	, rb/stb	1.2417	1.248	1.2511	1.2222	1.2022	1.1822	1.1633	1.145	1.1287	1.1115	1.094	1.0763	1.058
Rs	scf/stb	510	510	510	450	401	352	304	257	214	167	122	78	3:

3B. The Big Butte field is a combination-drive reservoir. The current reservoir pressure is 2500 psia.
Volume of bulk oil zone is 100,000 ac-ft and that of gas zone is 20,000 ac-ft. The reservoir production data and PVT information are given below:

.00119

.00137

.00161

.00196

.00249

.00096

.00087

.00107

Calculate the initial oil in place.

Bg, rb/scf

.00339

.00519

.01066

		Pressure, psia	Bo, rb/stb	Rs, scf/stb	N _P , MMstb	G _P , MMMscf	Bg, rb/scf	B _w , rb/stb	W _e , MMrb	W _p , MMrb	C _f , C _w	
	Initial Conditions	3000	1.35	600	0	0	.0011	1	1.145	1.1287	0	
	Current Conditions	2500	1.33	500	5	5.5	.0015	1	257	214	0	
3C.	What is the gas pressure gradient in a reservoir at 2600 psia and 240 ^o F (Z = 0.921, γ_g = .875).											
4.	Derive the Schilthuis material balance equation for a hydrocarbon reservoir which includes the											
	effects of all reservoir drive mechanisms.											20
5A.	Explain the production history of a) solution gas, b) gascap and c) natural water drive reservoirs											
	with the help of schematics.											12
5B.	What are	What are the differences between flash and differential expansion experiments? Which type of										
	experiment will provide the most realistic values of PVT parameters?											8
6A.	Derive the equation of Productivity Index (PI) for a reservoir under radial steady state flow											
	conditions.										14	
6B.	Explain how does reduction in oil viscosity enhances the oil recovery. How do you achieve the same?											6
