VII SEMESTER B.TECH (CHEMICAL ENGG.) END SEMESTER EXAMINATIONS, NOV/DEC 2015 SUBJECT: PROCESS MODELLING AND SIMULATION (CHE -403) REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- ✤ Missing data may be suitably assumed.
- ✤ Draw IFD wherever necessary.

1A.	The fluid is flowing along the inclined flat plate which is at angle β from the vertical. The film thickness over the plate is δ and the fluid is moving with velocity V. Develop an equation for velocity distribution. State all the assumptions.	10
1B.	An agitated $2m^3$ tank is initially filled with water at 25 °C. A steam coil with an area of 0.5 m ² heats the water using steam condensing at 120°C. The heat transfer coefficient for heating is 1140 J/s.m ² .K. The tank losses heat to the surrounding through the walls which have an area of 9 m ² . The heat transfer coefficient for heat losses is 10 J/s.m ² .K and the surrounding temperature is 25°C. How long will it take to heat the water to boiling point. Neglect the heat capacity of the tank walls. (Take water Cp=4187J/Kg.K)	10
2A.	Derive the center difference technique and develop the mathematical model or the dynamics response of an unsteady state counter current plug flow heat exchanger. Give briefly the solution procedure.	15
2B.	List out the characteristics of model.(Any 5 only)	05
3A.	Develop steady state tray composition for a 6 plate absorption column. A linear equilibrium relation holds between liquid x_m and vapor y_m on each plate and is given by $y_m = ax_m + b$. The inlet compositions to the column along with liquid and gas flow rate are known. Briefly give the solution procedure.	07
3B.	Write a short notes on degree of freedom?	05
3C.	Consider a set of reversible reaction: $A \rightleftharpoons B and B \rightleftharpoons C$ K_2 K_4 Where N _A ,N _B , N _C be the moles of A, B,C respectively present at any time t. Since the reaction is constant volume, N _A ,N _B , N _C are proportional to concentration. Derive $\frac{d^2N_A}{dt^2} + (K_1 + K_2 + K_3 + K_4) \frac{dN_A}{dt} + ((K_1 * K_3) + (K_2 * K_4) + (K_1 * K_4))N_A - (K_2 * K_4) = 0$	08
	Page 1 of 2	

4A.	Write the step by step procedure for modeling of any process.	10
4B.	Define the following (i) Model (ii) simulation (iii) grey box model (iv) white box model (v) black box model	5
4C.	Differentiate between lumped and Distributed parameter model with examples	5
5	Write the general modeling equations for a ternary equilibrium column of five stages including condenser and reboiler for a multi-component distillation column. Draw a neat information flow diagram for feed tray, reboiler and Condensor.	20
6	Develop the design equations for multi component pipe line flasher. Discuss the model for establishing temperature.	20
