Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

VII SEMESTER B.TECH (COMPUTER SCIENCE AND ENGINEERING)

MAKE-UP EXAMINATIONS, DEC 2015/JAN 2016

SUBJECT: DISTRIBUTED COMPUTING SYSTEMS (CSE-401)

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ANY FIVE FULL questions.

Missing data, if any, may be suitably assumed.

1A. Explain the failure model of a distributed system.1B. With an example explain common data representation (CDR) in CORBA.1C. Explain the design choices that are relevant to minimizing the amount of reply data h at the server.	5M 3M eld 2M
2A. Briefly explain how server handles the following design issues	
i) End point advertisement	
ii) Multiple clients requests.	5M
2B. Explain an algorithm for distributed garbage collection.	3 M
2C. Discuss the working of client side caching in NFS.	2M
3A.With diagrams explain how authentication and setting up of a secured channel handle in Kerberos.3B. Explain the following with respect to Domain name Service (DNS).	led 5M
i) Name space ii) Aliases	3 M
3C. Give the DNS name server architecture for managing the domain cse.mit.manipal.ac.	in
(i.e all names in the computer science dept of MIT).	2M
4A.With an example explain how vector clock enforce causal ordering.4B. Compare the Centralized, Distributed , and Token ring mutual exclusion algorithms.	5M 3M
4C. Suppose that two processes detect the demise of the coordinator simultaneously and both decide to hold an election using the bully algorithm. What happens?	2M

5A. Explain the working of primary back up remote write consistency model.						
5B. With a diagram explain monotoni	ic read client o	entric co	nsistency model.	3M		
5C. It is often argued that weak consist	stency models	impose a	an extra burden for	programmers.		
Why?	•	1		2M		
·						
	1	1		11 .		

- 6A. With state diagrams explain the working of two phase-commit protocol for distribute commit
 6B. With diagrams explain feedback suppression and hierarchical feedback control methods
- to address scalability in reliable multicasting. 5M