

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

INSPIRED BY LIFE

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2015

SUBJECT: POWER SYSTEM OPERATION AND CONTROL [ELE 421]

REVISED CREDIT SYSTEM

Time: 3 Hours

03 December 2015

MAX. MARKS: 50

Instructions to Candidates:

- Answer ANY FIVE FULL questions.
- Missing data may be suitable assumed.
- **1A.** An isolated alternator has the following data: $X_d = 1$, $X_q = 0.6$; $X_d^1 = 0.2$; r = 0.05; $T_{do}^{1} = 4$ sec; Find V_a as a function of time when at t=0, E_{fd}=1 pu is applied given (07)Z=0.05-j0.8.
- **1B.** A synchronous machine is in operation with $\theta = \omega_0 t + 2\pi/3$. V_a=100 $\angle 30^\circ$ v and (03) I_a = 50 \angle 30° A. Find i_d , i_q , v_d , v_q and three phase power output.
- **2A.** A 500KV line has the following parameters: β =0.0013rad/km; Z_c=250 Ω $(P_0 = 1000 MW)$. The line is 600km long and transfers power between two sources. Determine the power angle and voltage regulation characteristics for a power transmission of $1.5P_0$ for the following cases.

a) shunt compensation b) series compensation c) shunt and series (06) compensation

- **2B.** Derive the expression for subtranscient inductance of a synchronous machine. (04)
- Derive the expression for the current profile of a 400Km symmetrical line on no 3A. (05) load.
- An alternator is working under no load conditions. A 3-phase short circuit occurs 3B. at the terminals of the alternator. Neglecting damper currents find the expression

for the armature current starting from the differential equation $T'_{do} \frac{d|E'_{a}|}{dt} + E_{a} = E_{fd}$ (05)

4A. A Salient pole alternator is connected to infinite bus through a reactance of 0.2 pu. The generator is in steady state with $E_a = 1 \angle 20^\circ$. At t = 0, E_{fd} is changed to 2 E'_{a} (t) for t > 0. Find the steady state values of the current & the pu. Find $E_a(t)$ & terminal voltage of the alternator.

Assume
$$X_d = 1.15$$
, $X_q = 0.6$, $X'_d = 0.15$, $r = 0$, $T'_{do} = 2$ secs

- **4B.** Starting from the Park's Voltage equations derive the phasor diagram of a Salient pole alternator under transcient conditions. (03)
- 5A. Starting from the block diagram representation of an alternator connected to infinite bus with AVR and PSS, Explain the role of PSS in damping rotor oscillations. (06)
 - Area
 Rated Capacity (MW)
 R (Hz/ MW)
 D (MW per Hz)

 A
 100
 0.01
 1

 B
 1000
 0.001
 1
- **5B.** A two area system has the following data

There is sudden increase in load of 30MW in area A, find a) steady state (04) frequency deviation b) Tie-line power flow c) Power generated by each areas

- **6A.** The fuel cost models for the two thermal units are $F_1 = 7.74P_1 + 0.00107P_1^2$, $F_2 = 7.72P_2 + 0.00072P_2^2$. The transmission loss is $P_L = 0.5 \times 10^{-3}P_1^2 + 0.2 \times 10^{-3}P_2^2$. Where $P_1 \& P_2$ are in MW. The optimal generation of plant 1 is 370 MW. Find the incremental cost of Power delivered, the optimal generation of second plant, the power loss and the load. (05)
- **6B.** Determine the reactive power requirements of 400 km symetrical line loaded with $P=1.4 P_o$. Derive the formula used. $\beta=0.0013 \text{ rad/km}$. (05)