Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

SEVENTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: ADVANCED EMBEDDED SYSTEM DESIGN (ECE - 421)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ANY FIVE** full questions.
- Missing data may be suitably assumed.
- 1A. Assume the features of an embedded system are given in the form of technical tasks *T0*, *T1*, *T2*, *T3*, *T4* and *T5*. The flow of execution of these tasks is shown in **Fig.1.1**. The execution time(T) and power consumption(P) of each task by various processing elements is given in **Table 1.1**.
 - i. Explain the concept of co-synthesis in a typical embedded system design flow.
 - ii. Find suitable application mapping to design the system with power consumption less than 30 mWatts by drawing activity scheduling graph.
 - iii. Find suitable application mapping to design the system with total processing time less than 20msec by drawing activity scheduling graph.
- 1B. Write the differences among the following
 - i. Hard processor and soft processor
 - ii. Zynq SoC and Discrete FPGA-Processor combination
 - iii. General Purpose processor and Digital Signal processor
- 1C. Young engineer is in confusion of selecting proper processing element to implement the following operation:

$$E = A X B,$$

$$F = C \div D,$$

$$G = E + F$$

[where A,B,C,D,E,F are registers of appropriate size]

If high speed & low cost are his primary objectives then which one you suggest among GPP, FPGA and ZYNQ SoC to get optimum solution. Give reason.

(5+3+2)

- 2A. With the help of transition diagram, explain the power saving modes of PSoC 4.
- 2B. List all the clock sources available in PSoC4 and explain the use of them.
- 2C. Write the special features of digital signal processor over general purpose processors.

(5+3+2)

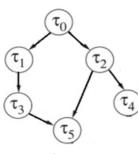
- 3A. From the component catalogue of PSoC Creator, assume we have selected one *DigitalIn*, two *DigitalOut* components and named them as **SW**, **LED_GREEN**, **LED_RED** respectively. The two *DigitalOut* pins are configured in '*Strong drive mode*' with initial drive state as '*LOGIC ZERO*' as shown in **Fig.3.1**. When working with CY8CKIT-044, if the code in *main.c* is as shown in **Fig.3.2** write status of **LED_GREEN** and **LED_RED** pins under the following drive conditions of **SW** pin when it is not connected to any digital value externally.
 - i. Drive mode: Resistive pull up, Initial drive: '0'.

- ii. Drive mode: Resistive pull down, Initial drive: '1'.
- iii. Drive mode: Strong, Initial drive: '0'.
- iv. Drive mode: Resistive pull up, Initial drive: '1', SW: connected to '0'
- v. Drive mode: Resistive pull down, Initial drive: '0', SW: connected to '1'
- 3B. With neat flow chart, explain the function flow of PSoC Bootloaders.
- 3C. List out the features of PSoC over traditional data processing elements.

(5+3+2)

- 4A. Write suitable Linux commands to do each of the following operations (multiple commands with pipe is allowed)
 - i. To halt the system after 7 mins by broadcasting the message "Scheduled maintenance".
 - ii. To remove a file named *pipe.c* available in */usr/bin* directory from the home directory of an active user, in interactive mode.
 - iii. To print all lines in a set of files that match a particular regular expression pattern.
 - iv. To display information about running processes in a text file named proc.txt
 - v. To compile, link and run a C program file named first.c
- 4B. Draw and explain the architecture of PSoC 4 interrupts.
- 4C. Explain briefly the universal digital blocks of PSoC.

(5+3+2)


- 5A. Explain in detail the following system calls or commands of Linux pipe with appropriate syntax and example.
 - i. popen
 - ii. pclose
 - iii. pipe
 - iv. mkfifo
 - v. open
- 5B. Assume the script shown in **Fig.5.1** is saved in a file *script_exam*. Explain how to make it as an executable file and also explain the output at each line of script.
- 5C. Assume the name of PSoC4 comparator component is "COMP". Explain the use of COMP_ZeroCal() & COMP_LoadTrim() API routines.

(5+3+2)

- 6A. Explain the behavior of Linux code if we include following system calls in it
 - i. **execlp**("ps", "ps", "ax", 0);
 - ii. new_pid = **fork**();
 - iii. child_pid = wait(&stat_val);
 - iv. **kill**(getppid(), SIGALRM);
 - v. res = **pthread_join**(a_thread, &thread_result);
- 6B. What is signal in Linux, explain the use of it with one example.
- 6C. What is a Shell in Linux. Explain its role and name few popular shells available to use

(5+3+2)

GPP	DSP	FPGA	ASIC
		Pa	age 2 of 3

Task	T(ms)	P(mw)	T(ms)	P(mw)	T(ms)	P(mw)	T(ms)	P(mw)
ТО	24.6	2.1	8.4	9.4	3.2	17.2	1.8	26.2
T1	7.2	9.7	9.7	7.2	17.6	2.8	14.8	7.0
<i>T2</i>	6.4	16.4	7.0	14.8	26.4	1.2	22.7	2.2
<i>T3</i>	26.2	1.8	18.4	2.4	9.4	8.4	8.8	8.8
<i>T4</i>	16.4	6.4	17.2	3.2	2.2	22.7	2.1	24.6
<i>T5</i>	6.4	16.4	1.2	26.4	2.8	17.6	2.4	18.4

Fig.1.1

T(ms)-Time taken by

each task to execute(in milli seconds). **P(mw)-** Power consuming by each task (in milli Watts).

Table 1.1

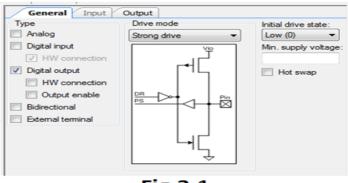


Fig.3.1

```
for(;;)
{
    if (SW_Read()==1)
        {
        LED_GREEN_Write(~LED_GREEN_Read());
        CyDelay(500);
        }
    else if(SW_Read()==0)
        {
        LED_RED_Write(~LED_RED_Read());
        CyDelay(500);
        }
}
```

Fig.3.2

#!/bin/sh
for file in *
do
if grep -q POSIX \$file
then
echo \$file
fi
done
exit 0
Fig.5.1