D NI					
Reg. No.					
NU2. 110.					
0					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

SEVENTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: ERROR CONTROL CODING (ECE - 439)

TIME: 3 HOURS

Instructions to candidates

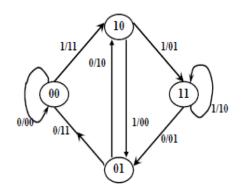
MAX. MARKS: 50

- Answer **ANY FIVE** full questions.
 - Missing data may be suitably assumed.
- 1A. Construct GF (2³) using polynomial $x^3 + x + 1$. Solve for x and y if $\alpha x + \alpha^2 y = \alpha^4$; $\alpha^2 x + y = \alpha^4$. Also find the value of $x^{64} + y^{64}$
- 1B. Find the conjugates of α^3 in finite field GF (2³) and its minimal polynomial.
- 1C. Define coding gain with example. Discuss its significance.

(5+3+2)

- 2A. Devise an encoder and decoder of C(n, k) linear block code specified by the parity check equations $V_0 = u_0 + u_2 + u_3$; $V_1 = u_0 + u_1 + u_2$; $V_2 = u_1 + u_2 + u_3$. (i) Give G & H matrices of code C in systematic form. (ii) Find the generator matrix of dual code of C. (iii) minimum distance of the code C. (iv) encode the message $1 + x^2$ (v) How many error patterns goes undetected?
- 2B. If weight distribution of coset-leaders are $\alpha_0 = 1$, $\alpha = 6$, $\alpha_2 = 1$ and others zero. If the bit transition probability is 10^{-2} , find the probability of error. Give the relation between weight distribution of linear code and its dual code.
- 2C. Explain standard array with example.
- 3A. For a (15,11) cyclic code defined by polynomial $1 + x + x^4$ find G & H in systematic form.
- 3B. Explain the implementation of (n-l,k-l) shortened encoder and decoder with example.
- ³C. Implement a Meggitt decoder for the cyclic code defined by polynomial $1 + x + x^4$
- (5+3+2)

(5+3+2)


- 4A. Find the error location polynomial if received polynomial $r(x) = x^4 + x^9$ using triple error correcting BCH code.
- 4B. Implement the Chien's search algorithm for the error location polynomial $1 + \alpha^3 x^2 + \alpha^6 x^3$.
- 4C. Find the error polynomial if error location polynomial is $\sigma(x) = (1 + \alpha x)(1 + \alpha^6 x)(1 + \alpha^{10})$ over $GF(2^4)$
- 5A. Find the symbol error values if syndromes of received polynomial are $\{\alpha^{13}, \alpha^{14}, \alpha^9, \alpha^7, \alpha^8, \alpha^3\}$ and error location numbers are $\{\alpha^3, \alpha^8, \alpha^{13}\}$ using triple error RS code over GF (2⁴).
- 5B. Implement an RS encoder with block length 15 and capable of correcting double symbols.
- 5C. Explain various types of ARQ strategies.

(5+3+2)

(5+3+2)

- 6A. For the state diagram shown in Figure Q6A, decode the received bit {00, 10, 00, 10, 00, 11, 10, 01} using Viterbi decoding algorithm.
- 6B. For the convolutional code shown in Figure Q6B, Determine various generator polynomials that completely describe the code. If the message polynomials $[U^1; U^2]$ is $[D^2 + D^3; 1 + D + D^4]$, Find the matrix G and code polynomial V(D).
- 6C. Derive the expression for the efficiency for the selective repeat ARQ strategy considering erroneous channel.

(5+3+2)

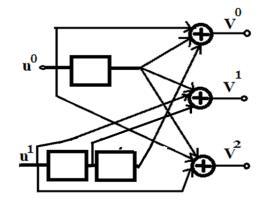


Figure 6A

Figure 6B