Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

SEVENTH SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: POWER ELECTRONICS (ECE - 403)

TIME: 3 HOURS	MAX. MARKS: 50
Instructions to candidates	
• Answer ANY FIVE full questions.	
• Missing data may be suitably assumed.	

1A. The voltage and current for a device are periodic functions described by

 $\begin{aligned} v(t) &= \begin{cases} 10V & 0 < t < 14ms \\ 0 & 14ms < t < 20ms \end{cases} \\ i(t) &= \begin{cases} 7A & 0 < t < 6ms \\ -5A & 6ms < t < 10ms \\ 4A & 10ms < t < 20ms \end{cases} \end{aligned}$

Determine (a) Instantaneous power, (b) Average power, and (c) Energy absorbed by the device in each period. Draw the waveforms of instantaneous current, voltage and power.

- 1B. With help of cross sectional view and V-I characteristics, explain the working of power MOSFET.
- 1C. Explain the concept of latching with the help of two-transistor model of Thyristor.

(5+3+2)

- 2A. A single phase full wave fully controlled bridge converter is operated from a 120 V, 60 Hz supply. If the resistance of the load is 10 Ω and the delay angle is α = π/3, determine (a) Efficiency; (b) Form factor; (c) Ripple factor; (d) Transformer utilization factor; (e) peak inverse voltage of Thyristor.
- 2B. A buck converter has $V_s = 20V$, $L = 150\mu$ H, D = 0.35, $R = 20\Omega$, $C = 1000\mu$ F and f = 20 kHz. Obtain the values of V_0 , average inductor current and maximum inductor current.
- 2C. What are the advantages and disadvantages of circulating current in a dual converter? How do you deal with its effects in a dual converter?

(5+3+2)

3A. With necessary circuit diagram and waveforms, obtain the expressions for V_0 , $\Delta V_0 / V_0$, $\Delta V_{c1} / V_0$, $L_{1,min}$ and $L_{2,min}$ for the Cuk converter shown in Figure 3(a).

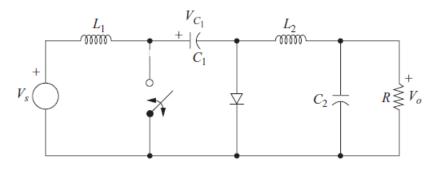


Figure 3(a)

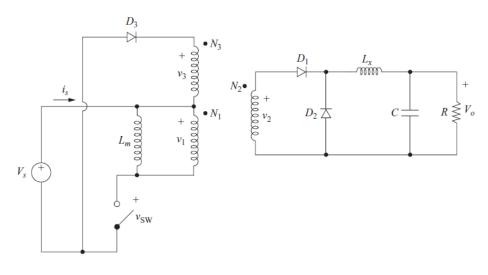
- 3B. A single phase full-wave controlled rectifier with center-tap transformer is used to supply a heater.Draw the load current and voltage across one thyristor for α =45⁰. Also obtain the expression for average output voltage.
- 3C. Design an ac-ac converter which reduces the output frequency as well as the average output voltage to half the original values.

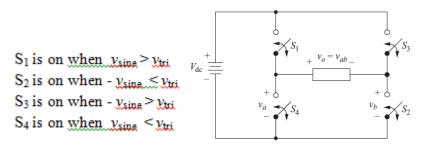
(5+3+2)

- 4A. For the Forward dc-dc converter shown in Figure 4(a), derive the expression for
 - (i) Output voltage
 - (ii) The maximum and minimum current in L_x
 - (iii)Output voltage ripple
 - (iv)Peak current in the transformer primary winding

Determine the values of the above parameters if, $V_s = 40V$. $R = 5\Omega$, $L_x = 0.5$ mH, $L_m = 4$ mH, $C = 100\mu$ F, f = 25kHz, $N_1/N_2 = 2$, D = 0.5.

Also, determine the transformer turns ratio (N_1/N_3) such that magnetizing current is reset to zero during each switching period. Assume all components are ideal




Figure 4(a)

4B. Draw the circuit diagram of current fed DC-DC converter and derive the expression for output voltage.

4C. With the help of necessary waveforms explain the use of feedback diodes in full-bridge inverters.

(5+3+2)

- 5A. What is the cause of switching losses in a buck converter? Propose a method to eliminate this loss by making the current zero during switching operation. Derive the expression for the output voltage in terms of the time intervals for each circuit condition.
- 5B. Full-bridge inverter for unipolar PWM is shown in Figure 5(b). Plot bridge voltages v_a , v_b and output voltage for the following switching scheme.

5C. What are the two advantages of PWM technique over square wave switching scheme in inverters?

(5+3+2)

- 6A. Draw the circuit diagram of three-phase bridge inverter. Plot (i) phase to phase (V_{bc}) (ii) phase to neutral (_{Vbn, Vcn}) voltage waveforms in a 3-φ inverter with 180° conduction angle. (Note: Just plot waveforms without considering star or delta connected load)
- 6B. Draw the block diagram and explain the working of UPS.
- 6C. List various types of power line disturbances

(5+3+2)