		ſ	Reg. No.							
Manipal Institute of Technology, Manipal (A Constituent Institute of Manipal University)										E IS POWER
VII SEM. B.TECH. (MECH. ENGG.) MAKE-UP EXAMINATIONS, DEC 2015 SUBJECT: MECHANICAL VIBRATIONS [MME-403] (REVISED CREDIT SYSTEM)										
	* *	Instruction Answer ANY Additional dat Assumptions r Sketches are to	ons to Cand FIVE FUL a, if any, m nade must b b be drawn	lidate L que ay be be clea where	s: stions. approp urly me ver nee	oriate ention cessa	ly ass ned. ry.	sumed.		50
 1A) Derive an expression to determine natural frequency of a pendulum, taking into consideration the mass of the pendulum rod. 1B) By Holzer's method determine the length 										
1D)	L of the shaft, shown that it's fundamental 200 rad/s. Use the values, $k_t = 3 \times$ $J_1 = 100 \text{ kgm}^2$ $J_3 = 50 \text{ kgm}^2$	in Fig. (Q1B), g natural frequen 10^{6} Nm/rad $J_{2} = 80$ kgm ² $J_{4} = 10$ kgm ²	given cy is) k	b_{k_i}				>	

 J_2

J

05

05

05

- 2A) Derive the equation of motion of a viscous damped spring-mass system. Obtain its solution if the system is critically damped. Also define (i) Critical Damping Coefficient and (ii) Damping Ratio
- 2B) In a refrigeration plant, a section of pipe carrying the refrigerant vibrates violently at a compressor speed of 500 rpm. To eliminate this difficulty, it was proposed to clamp a cantilever spring mass system to the pipe to act as an absorber. For a trial test, a 2 kg absorber tuned to 500 rpm, resulted in two natural frequencies of 450 and 555.6 cpm.
 - (i) Determine the mass and stiffness of the main system.
 - (ii) If the absorber system is to be designed so that the natural frequencies lie outside the region 430 and 581.4 cpm, determine the mass and stiffness of the absorber system.
- Derive an expression to determine the steady state amplitude of vibration of an 05 3A) IC engine due to the reciprocating unbalanced force excitation.

G = 80 GPa

Shaft diameter = 70 mm.

- 3B) A horizontal spring-mass system consists of a single spring and a single mass of 40 kg. The mass slides horizontally on a dry surface whose coefficient of friction is 0.25. The mass makes 6 oscillations in 1 second when allowed to oscillate over the dry surface. If the mass is pulled 27 mm to the left side of its mean position and allowed to oscillate freely, find
 - (i) Stiffness of the spring.
 - (ii) The final rest position of the mass.
 - (iii) The number of half cycles required to bring the mass to rest position.
- 4A) Define *Flexibility/Displacement Influence Coefficient*. State and prove the Maxwell's Reciprocal Theorem.
 05
- 4B) A single cylinder vertical petrol engine of total mass 500 kg is mounted upon a steel chassis frame and causes a vertical static deflection of 3 mm. The reciprocating parts of the engine have a mass of 6 kg and move through a vertical stroke of 150 mm with simple harmonic motion. A dashpot is provided, the damping resistance of which is directly proportional to the velocity and amounts to 30 kN at 1.5 m/s. If a steady state vibration has been reached, determine,
 - (i) The amplitude of forced vibrations when the driving shaft of the engine rotates at 800 rpm.
 - (ii) The maximum dynamic force transmitted to the ground.
 - (iii)The speed of the driving shaft (in rpm) at which resonance will occur
- 5A) For the system shown in Fig. (Q5A), find the two natural frequencies of the system. State whether it is a semi-definite system. Justify your answer.

Fig. (Q5A)

- 5B) A disc of mass 6 kg is mounted on a shaft mid-way between short bearings, which may be assumed to be simple supports. The bearing span is 600 mm. The steel shaft is horizontal and is 8 mm in diameter. The center of gravity of the disc is displaced 3 mm from its geometric center. The equivalent viscous damping coefficient at the center of disc-shaft arrangement is 60 Ns/m. If the shaft rotates at 1000 rpm, determine
 - (i) The dynamic load on bearings.
 - (ii) The bending stress acting on the shaft.
 - (iii) The power required to overcome the damping in the system.
 - Take modulus of elasticity for shaft material = 200 GPa.

05

05

05

05

6A) Determine the flexibility/displacement influence coefficients of the triple pendulum shown in Fig. (Q6A).

- 6B) The shaft-disc arrangement shown in Fig. (Q6B) undergoes small amplitude-torsional vibrations. The mass moment of inertia of the disc is 2 kgm². The modulus of rigidity for the shaft material is 80 GPa.
 - (i) Find the equivalent torsional stiffness of the system.
 - (ii) Determine the natural frequency of torsional vibrations, neglecting the inertia effect of the shaft.
