

Reg.No	
--------	--

MANIPAL UNIVERSITY, MANIPAL

FIRST SEMESTER M.SC (APPLIED MATHEMATICS & COMPUTING) END SEMESTER EXAMINATION NOV /DEC 2016

SUB: DIFFERENTIAL EQUATIONS (MAT - 601) (REVISED CREDIT SYSTEM)

Time: 3 Hrs.	23/11/2016	Max.Marks: 50	
Note: a) Answer any FIVE full questions and they carry equal marks $(4 + 3 + 3)$			

- 1A. Let $\phi_1, \phi_2, \dots, \phi_n$ be solutions of $L(y)=y^n + a_1 y^{n-1} + \dots + a_n y=0$ on an interval I and $x_0 \in I$. I Then prove that $W(\phi_1, \phi_2, \dots, \phi_n)(x) = W(\phi_1, \phi_2, \dots, \phi_n)(x_0)e^{-a_1(x-x_0)}$ where a_1 is the coefficient of y^{n-1} .
- 1B. Prove that

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$$
$$H_n'(x) = 2nH_{n-1}(x)$$

1C Prove that
$$\int_{-1}^{1} x P_n(x) P_{n-1}(x) dx = \frac{2n}{4n^2 - 1}$$

2A. State and prove **uniqueness** theorem on n th order linear differential equation L(y) = 0 with constants coefficients and usual initial conditions.

2B Solve in series
$$x \frac{d^2y}{dx^2} + \frac{dy}{dx} + xy = 0$$
.

2C. Prove that
$$\int_0^x [tJ_n^2(t)] dt = \frac{x^2}{2} [J_n^2(x) - J_{n-1}(x) J_{n+1}(x)]$$

- 3A. Solve $y'' 4y = 3e^{2x} + 4e^{-x}$ by annihilator method.
- 3B. Obtain the solution of Bessel's differential equation $x^2y'' + xy' + (x^2 n^2)y = 0$ when n is an integer.
- 3C State and prove **existence** theorem on n th order linear differential equation L(y) = 0 with variable coefficients and usual initial conditions.

4A. .(i) Show that the functions φ_1 , φ_2 , defined by $\varphi_1 = x^2$, $\varphi_2 = x | x |$, are linearly independent for $-\infty < x < \infty$.

(ii) Compute the Wronskian of these functions. Compare the two results and explain your answer.

- 4B Prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = \begin{cases} 0 , \alpha \neq \beta \\ \frac{1}{2} [J_{n+1}(\alpha)]^{2} , \alpha = \beta \end{cases}$ where α , β are the roots of $J_{n}(x) = 0$.
- 4C Prove that n solutions of L(y) = 0 on an interval I are linearly independent if ,and only if , Wronskian never equals to zero.
- 5A. Show that every solution of the constant coefficient equation $y'' + a_1y' + a_2y = 0$ tend to to zero as x tends to infinity if, and only if, the real parts of the roots of the characteristic polynomial are negative.
- 5B. Suppose ϕ is a function having continuous derivative on $0 \le x <\infty$ such that $\phi'(x) + 2\phi(x) \le 1$ for all x and $\phi(0) = 0$. Show that $\phi(x) \le \frac{1}{2}$ for $x \ge 0$.

5C. Prove that
$$P_n(x) = \frac{1}{n!2^n} \frac{d^n}{dx^n} \left[\left(x^2 - 1 \right)^n \right]$$

- 6A. State and prove orthogonal property of Hermite functions.
- 6B. Solve by method of variation of parameters y'' + y' + y = 1
- 6C. (i) Prove that $L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x})$.

(ii) Show that eigen functions belonging to two different eigen values are orthogonal with respect to r(x) in (a,b)