Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

I M.Sc. (Applied Mathematics and Computing)

END SEMESTER MAKEUP EXAMINATIONS, NOV/ DEC 2016

SUBJECT: REAL ANALYSIS [MAT 605]

REVISED CREDIT SYSTEM (30/12/2016)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer any FIVE full questions.

1A.	Define a compact set. Show that compact subsets of metric spaces are	3
	closed.	-
1 B .	Show that A set E is closed iff its complement is open	3
1C.	Show that the set of real numbers R has Archimedean property and hence	Δ
	show that there exists a rational number between any two real numbers.	-
2A.	Let $\{p_n\}$ be a sequence in a metric space X. If $p \in X$, $p' \in X$, and if $\{p_n\}$	3
	converges to p and to p', then show that $p' = p$.	
2B.	If p > 0, then show that $\lim_{n \to \infty} \sqrt[n]{p} = 1$.	3
2C.	If $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite sub-collection of (K_{α}) is non-empty, then	4
	show that $\bigcap K_{\alpha}$ is non empty.	•
3A.	Obtain the radius of convergence and circle of convergence for	
	(i) $\sum_{n=0}^{\infty} \left(\frac{2}{n}\right)^n z^n$ (ii) $\sum_{n=0}^{\infty} \left(1 - \frac{3}{n}\right)^{n^2} z^n$	3
3B.	If f is a continuous mapping of a compact metric space X into a metric	3
	space Y, then show that f(X) is compact.	-
3C.	Let $e = \sum_{n=0}^{\infty} \frac{1}{n!}$. Show that $2 < e < 3$. Also show that e is irrational.	4

	Reg. No.		
MANIPAL INSTITUTE OF TECHNOLOGY			
4 A.	If f is a continuous mapping of a compact metric space X into a metric	3	
	space Y, then show that f is uniformly continuous.		
4 B .	Let [a, b] be a given interval. Suppose that f is a bounded function on [a, b] and α is a monotonically increasing function on [a, b]. Show that $\int_{-a}^{b} f d\alpha \leq \int_{a}^{-b} f d\alpha.$	3	
4C.	If a partition P [*] is a refinement of a partition P of [a, b], f is a bounded		
	function on [a, b] and α is a monotonically increasing function on [a, b],	4	
	then show that $L(P, f, \alpha) \le L(P^*, f, \alpha)$		
5A.	Suppose K is compact, and		
	(i) $\{f_n\}$ is a sequence of continuous functions on K,		
	(ii) $\{f_n\}$ converges point wise to a continuous function f on K,	3	
	(iii) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K$, $n = 1, 2, 3,$		
	then show that $f_n \rightarrow f$ uniformly on K.		
5B.	Let $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and let $\lim_{t \to x} f_n(t) = A_n$ $(n=1,2,3)$ then show that $\{A_n\}$ converges and $\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$	3	
5C.	If X is a complete metric space, and if ϕ is a contraction of X into X, then		
	show that there exists one and only one $x \in X$ such that $\phi(x) = x$.	4	
6A	Show that the sequence of functions $\{f_n\}$ defined on E, converges uniformly on E if		
	and only if for every $\epsilon>0$, there exists an integer N such that $m\ge N,n\ge N,x\inE$ implies $ f_n(x)-f_m(x) <\epsilon$	4	
6 B	Let $\{E_{\alpha}\}$ be a collection of sets E_{α} . Show that $\left(\bigcup_{\alpha} E_{\alpha}\right)^{C} = \bigcap_{\alpha} E_{\alpha}^{C}$	3	
6C	If $f \in R(\alpha)$ and $g \in R(\alpha)$ on [a, b], then show that $fg \in R(\alpha)$.	3	