Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL UNIVERSITY, MANIPAL

I M.Sc. (Applied Mathematics and Computing)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: REAL ANALYSIS [MAT 605]

REVISED CREDIT SYSTEM (28/11/2016)

Time: 3 Hours

MAX. MARKS: 50

	Instructions to Candidates:	1
*	Answer any FIVE full questions.	

1A.	Define a compact set. If F is a closed subset and K is compact subset of a metric space X, show that $F \cap K$ is compact.	3
1 B .	Show that every neighbourhood is an open set.	3
1C.	Show that the set of real numbers R has Archimedean property and hence show that there exists a rational number between any two real numbers.	4
2A.	Define a complete metric space. In any metric space X show that every convergent sequence is a Cauchy sequence.	3
2B.	If p > 0 and α is real, then show that $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0.$	3
2C.	Define a connected set. Show that a subset E of the real line R is connected if and only if it has the following property: If $x \in E$, $y \in E$, and $x < z < y$, then $z \in E$.	4
3A.	Obtain the radius of convergence and circle of convergence for (i) $\sum_{n=0}^{\infty} \left(\frac{n+1}{n+2}\right)^n z^n$ (ii) $\sum_{n=0}^{\infty} \frac{z^n}{n!}$	3
3B.	Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then show that f(X) is compact.	3

Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

3C.	Let $e = \sum_{n=0}^{\infty} \frac{1}{n!}$. Show that $2 < e < 3$. Also show that e is irrational.	4
4 A.	Show that a mapping of a metric space X into a metric space Y is	
	continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V	3
	in Y.	
4B.	Show that $f \in R(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$ there exists a	2
	partition P such that U(P, f, α) – L(P, f, α) < ϵ .	3
4C.	If $f_1 \in \mathbf{R}(\alpha)$ and $f_2 \in \mathbf{R}(\alpha)$ on [a, b], then show that $f_1 + f_2 \in \mathbf{R}(\alpha)$ and that	
	$\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha.$	4
5A.	State and prove Cauchy criterion for uniform convergence.	3
5B.	Suppose K is compact, and	
	(i) $\{f_n\}$ is a sequence of continuous functions on K,	
	(ii) $\{f_n\}$ converges point wise to a continuous function f on K,	3
	(iii) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K$, $n = 1, 2, 3,$	
	then show that $f_n \rightarrow f$ uniformly on K.	
5C.	If X is a complete metric space, and if ϕ is a contraction of X into X, then	
	show that there exists one and only one $x \in X$ such that $\phi(x) = x$.	4
6A.	Show that a set E is open iff its complement is closed.	3
6B.	Show that a countable union of countable sets is countable.	3
6C.	If a partition P [*] is a refinement of a partition P of [a, b], f is a bounded	
	function on [a, b] and α is a monotonically increasing function on [a, b],	4
	then show that L(P, f, α) < L(P [*] , f, α).	