

Manipal University, Manipal

III SEMESTER M.Sc. (APPLIED MATHEMATICS AND COMPUTING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: FORMAL LANGUAGE AND THEORY OF COMPUTATION [MAT 709.10]

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ANY FIVE FULL the questions.

1A.	Prove that for every NDFA, there exists a DFA which simulates the behavior of NDFA.					4 Mark		
1 B .	Define Mealy Machine. Design a Moore machine that will read sequences made up of letters A,E,I,O,U and will give as output the same sequences except that in this case where an I directly follows an E, it will be changed to U.						3 Mark	
1C.	Show that $L = \{ww \mid w \in \{a,b\}^* \text{ is not regular.}$						3 Marks	
2A.	Explain the types of machines which gives output.Convert the given machine in to an equivalent Moore machine from the given table:Next State $i.p a=0$ $i.p a=1$							4 Mark
		$ \begin{array}{c} \text{State} \\ \hline \rightarrow q_1 \\ \hline q_2 \\ \hline q_3 \\ \hline q_4 \end{array} $	$\begin{array}{c c} State \\ \hline q_3 \\ \hline q_1 \\ \hline q_2 \\ \hline q_4 \end{array}$	O.P 0 1 1 1	State q2 q4 q1 q3	O.P 0 1 0	-	
2B.		e regular ex	pression re	-	ng the se		strings of the form where m≥0,n≥1.	3 Mark
2C.	Constru given in		imum stato —@	e autom	aton equ		to the finite automaton	3 Mark

	Reg. No.								
and the second se	Manipal University, Manipal								
3A.	State and prove Arden's theorem.								
3B.	Define push down automata. Represent this transition diagram in terms of PDA q_0 q_1 q_2 q_2 q_1 q_2 q_2 q_1 q_2 q_2 q_3 q_4 q_1 q_2 q_3 q_4 q_4 q_5 q_5 q_6 q_7 q_8 q_1 q_2 q_3 q_4 q_5 q_4 q_5 q_5 q_6 q_6 q_6 q_7 q_8								
3C.	Prove $(1+00^*1) + (1+00^*1) (0+10^*1)^* (0+10^*1) = 0^*1(0+10^*1)^*$.								
4A.	Find the regular expression corresponding to the figure using Arden's theorem.								
4B.	State and prove pumping lemma for regular sets.								
4C.	 Find regular expressions representing the following sets: i)the set of all strings over {0,1} having atmost one pair of 0's or atmost one pair of 1's. ii)the set of all strings over {0,1} ending with 11 and beginning with 00. 								
5A.	State the properties of the transition functions.Prove that for any transition function δ and for any two input strings x and y, $\delta(q,xy) = \delta(\delta(q,x), y).$								
5B.	State and prove Kleen's theorem.	3 Marks							
5C.	Is \Rightarrow_{G} an equivalence relation on $(v_n \cup v_t)^*$								
6A.	Define a Greibach normal form. Convert the grammar $S \rightarrow AB, A \rightarrow BS/b, B \rightarrow S A/a$, into GNF.								
6 B .	Verify by the comparison method the automata M_1 and M_2 are equivalent.								
6C.	If L is regular then prove that L^{T} is also regular.	3 Marks							