Reg.No.									
---------	--	--	--	--	--	--	--	--	--

MANIPAL UNIVERSITY, MANIPAL - 576 104

THIRD SEMESTER M.Sc (APPLED MATHEMATICS & COMPUTING)

End Semester Makeup Examination Dec-2016

SUB: GRAPH THEORY (MAT 707) (REVISED CREDIT SYSTEM)

Time: 3 Hrs.

Max. Marks:50

Note: Answer any FIVE full questions.

- (a) Let G be a (p,q) graph all of whose vertices have degree k or k + 1. If G has p_k > 0 vertices of degree k and p_{k+1} vertices of degree k + 1, then show that p_k = (k + 1)p 2q.
 - (b) Show that in any party with 6 people, either there are 3 people who mutually know each other or 3 people who mutually do not know each other. (3)
 - (c) Show that every s.c. graphs has 4n or 4n+1 vertices for some positive integer n
 - (3)
- 2. (a) With usual notation show that $k(G) \le \lambda(G) \le \delta(G)$. (4)
 - (b) Show that every tree has a center consisting of either one vertex or two adjacent vertices.(3)
 - (c) Show that a (p, q) graph is a tree if and only if it is acyclic and p = q + 1.(3)
 - 3. (a) Let G be a (p,q)simple graph and let u and v be two non adjacent vertices of G such that deg(u) + deg(v) ≥ p. Then show that G is Hamiltonian if and only if G + (u, v) is Hamiltonian. (4)
 - (b) Show that a graph is bipartite if and only if it has no odd cycle. (3)
 - (c) Define line graph L(G) and total graph T(G) of a graph G. Find the number of edges in L(G) and T(G).
 (3)
- 4. (a) With usual notation show that α₀ + β₀ = α₁+₁= p where p is the number of vertices in G.

- (b) Show that a matching in G is maximal if and only if G contains no augmenting path. (3)
- (c) With usual notation show that for a planar (p,q) graph G, p + q r = 2where r is number of regions. (3)
- 5. (a) Find the chromatic polynomial of the graphs C_4 and $K_{1,3}$. (4)
 - (b) Show that if G is a cycle on n vertices then the chromatic polynomial of G is given by π_k(G) = (k 1)ⁿ + (-1)ⁿ(k 1)
 (3)
 - (c) Define Adjacency matrix A(G) of a graph G. Show that (i, j)th entry of Aⁿ gives the number of walks of length n between the vertices v_i and v_j in G.
- 6. (a) Define incidence matrix of a graph G. Show that it is of rank n 1 when G has n vertices. (4)
 - (b) Let G be a graph with 0,1,-1 incidence matrix Q(G). Then show that Q(G) is totally unimodular. (3)
 - (c) Show that a graph G in which every vertex is of even degree cannot have a bridge.(3)
