

MANIPAL UNIVERSITY

Reg No					

DEPARTMENT OF SCIENCES III SEMESTER M.Sc (CHEMISTRY) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: ADVANCED ORGANIC CHEMISTRY 1 [CHM-701]

			I	REVISED	CREDIT SY	STEM		
	Time:	3 Hours		Date:	24/11/2016		MAX. MARKS: 50	0
			Ir	nstructio	ns to Cand	lidates:		
			Answer ANY FIVE FUL Write chemical equa			sary.		
1A.			e chemical proper	rties, tw	o synthetic	applications a	nd structure of	3
1B.	i) V	What is nearbonyls				nsertion reaction	in metal-	2
	ii)]	Explain t	transmetallation with	an examp	ole.			1
1C.		Predict th	he aromaticity and elee product in the follo	owing read	etions	n reactions of ferr	ocene.	2 2
	a	ı. Na ₂ Fe	$e(CO)_4$ $\xrightarrow{RCOC1}$? $\frac{R^1\Sigma}{}$	` ?			
	b	о. СН ₃ -0	$CH=CH_2 + CO + H_2 -$	Co ₂ (CO) ₈	?			
2A.	i)] ii)]	Metal-aro Metal-ak	enthetic methods for the ene complexes cyl complexes	e followi	ng metal com	nplexes.		3
2B.			lyl complexes between Fischer a	nd Schro	ck carbenes.	Explain the bo	onding in Fischer	3
	carbo					1		
2C.			nical properties of or	_	-	ounds. Explain t	he applications of	2
		_	nium compounds in one general properties			netallics.		2
3A.			the chemical propert he structural features	-	-			2
3B.	i) I	Explain t	he common routes of	decompo	osition of tran		ds.	2
20			Tebbe's reagent? Me			1		1
3C.		-	wo synthetic applicat the reaction of metal		-	-	nde	2 2
4A. 4B.	Expl Expl	lain the c lain the s	eatalytic cycle for the tructures of following b) Rh4(CO)12 c	hydroger g metal cl	nation of alke usters using l	nes catalyzed by	$[RuCl_2(PPh_3)_4].$	3

4C.	i) Describe 16 electron rule with the help of a molecular orbital diagram.ii) Define olefin metathesis. Explain it with a catalytic cycle.	2 2
5A.	Describe the catalytic cycle for carbonyl catalyzed hydroformylation of alkenes.	3
5B.	Explain the mechanism of reductive elimination. How does the geometry of the square planar complexes change upon oxidative addition reaction?	3
5C.	i) Explain in orbital terms why the maximum coordination number decreases as the number of d electrons increases?	2
	ii) Describe the factors affecting the ligand substitution reactions in organometallics with suitable examples.	2
6A	Explain the catalytical cycle for the conversion of propylene to acetone using Wacker process.	3
6B	Which reaction forms the heart of the Ziegler-Natta polymerization for alkenes? Explain the catalytic cycle.	3
6C	i) Write the different preparative methods for the synthesis of metal clusters.ii) Give reasons for the following:	2 2
	 a) Fluxionality complicates the ¹H NMR spectrum of some molecules. b) After the oxidative addition reaction, the co-ordination number of the metal increases by two in Vaska's reagent. 	
