

## MANIPAL UNIVERSITY, MANIPAL

FIRST SEMESTER M.Sc(PHYSICS) END SEMESTER EXAMINATION, NOVEMBER, 2016

## SUB: CLASSICAL MECHANICS (PHY- 603) (REVISED CREDIT SYSTEM)

TIME: 3 HRS.

MAX.MARKS: 50

NOTE: (A) ANSWER ANY FIVE FULL QUESTIONS. (B) EACH QUESTION CARRIES 10 MARKS.

| 1A | A projectile motion in a resistive medium is described by $x = \frac{U}{k} (1 - e^{-kt})$ and                                                                                                                                                                                                              |                   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|    | $y = -\frac{gt}{k} + \frac{kV+g}{k^2} (1 - e^{-kt})$ , where $x = U$ , $y = V$ when $t = 0$ , $k =$ resistive force per unit velocity per unit mass. Obtain an expression for its time of flight when the resistance is small.                                                                             | æ<br>e air<br>[5] |
| 1B | In a conservative central force field show that the total energy of a system of two bodies is constant.                                                                                                                                                                                                    | [5]               |
| 2A | State the Kepler's laws of planetary motion. Prove the Kepler's 3 <sup>RD</sup> law of planeta<br>motion.<br>A double star is formed of two components, each having a mass equal to mass of<br>Sun. The distance between them is same as that between the Earth and the Sun<br>What is its orbital period? | ary<br>the<br>[5] |
| 2B | Obtain an expression for Hamiltonian in terms of kinetic energy and potential energies.                                                                                                                                                                                                                    | [5]               |
| 3A | Obtain an expression for the velocity dependent potential of electromagnetic field hence write an expression for Lagrangian in terms of this potential.                                                                                                                                                    | and<br>[5]        |
| 3B | Explain inertia tensor. Write an expression for angular momentum of a rigid body terms of inertia tensors. Obtain Euler's equations of motion of a rigid body.                                                                                                                                             | in<br>[5]         |
| 4A | Obtain Hamiltonian for a free particle in (i) cartesian coordinate system (ii) cylindrical polar coordinate system (iii) spherical polar coordinate system.                                                                                                                                                | [5]               |
| 4B | Prove this property of the poisson brackets: $[u, v] = -[v, u]$<br>Prove the Jacobi identity satisfied by the poisson brackets:                                                                                                                                                                            | [5]               |
| 5A | Discuss the theory of oscillations of particles on a string. Obtain the expressions frequencies in various modes in the case of 2 particles.                                                                                                                                                               | for<br>[6]        |
| 5B | Explain the strain ellipsoid.                                                                                                                                                                                                                                                                              | [4]               |
| 6A | Discuss the elastic properties of general solids.                                                                                                                                                                                                                                                          | [5]               |
| 6B | Obtain an expression for the group speed of gravity waves on water surface.                                                                                                                                                                                                                                | [5]               |
|    |                                                                                                                                                                                                                                                                                                            |                   |