Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL A Constituent Institution of Manipal University

I SEMESTER M.Tech. (BME) DEGREE MAKE-UP EXAMINATIONS, DEC/JAN 2016-17 SUBJECT: BIOMECHANICS & BIO-DYNAMICS (BME 5104) (REVISED CREDIT SYSTEM)

Tuesday, 3rd January 2017, 9am to 12 noon

TIME: 3 HOURS

MAX. MARKS: 100

Instructions to Candidates:		
1.	Answer all the questions.	
2.	Draw labeled diagram wherever necessary.	
1A.	Draw a graph (muscle tension vs. muscle length) to represent active, passive and total tension and also explain it.	6
1 B .	Explain about the bone failure mechanics and also write about the types of bone fracture.	6
1C.	(i) Write the movements involved in pronation and supination of foot.	2+6
	(ii) Define all the human movements possible in the sagittal plane.	
2A.	Draw the stress-strain diagram of tendon & ligament and explain it.	6
2B.	Explain how the muscle fibers are recruited (i.e) order of muscle fiber activation and deactivation?	6
2C.	(i) With an example each, define active and passive insufficiency.	4+4
	(ii) Draw the mechanical model of musculotendinous unit and explain it.	
3A.	Write about the following factors influencing projectiles:	6
	(i) projection angle(ii) projection velocity	
	(iii) relative projection height	
2 D	Derive the relationship of linear and engular acceleration	E
3B.	Derive the relationship of linear and angular acceleration.	6
3C.	How do you measure the vertical ground reaction force using a force platform?	8

- 4A. A forearm weighing 35 N is held at an angle of 45° to the vertically oriented humerus bone. 6 The center of gravity of the forearm is located at a distance of 15 cm from the center of the the elbow joint. The elbow-flexor muscles are attached at an average distance of 3 cm from the center of the elbow joint. Calculate the force to be exerted by the elbow-flexors, to maintain the same position. Calculate the force to be exerted by the elbow-flexors, if a weight of 50 N is held in the hand, at a distance of 25 cm from the center of the elbow joint. Draw the free body diagram.
- **4B.** If the location of hip, knee & ankle joints are (1.14, 0.80), (1.22, 0.51) and (1.09, 0.09) **6** respectively, calculate the angles of thigh & leg segments and also the angle of knee joint.
- **4C.** With an example, explain in detail about force couple.
- 5A. A badminton shuttlecock is struck by a racquet at an angle 35°, giving it an initial speed of 10 fm/s. How high will it go? How far will it travel horizontally before being contacted by the opponent's racquet at the same height from which it was projected?
- **5B.** Explain in detail about the floating position of human body.**6**
- **5C.** Illustrate to show how lift force is generated in a bottom spinning ball. **8**

8