Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

I SEMESTER M.TECH (CONSTRUCTION ENGINEERING & MANAGEMENT)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: OPERATIONS RESEARCH AND DECISION THEORY

[CIE 5102]

REVISED CREDIT SYSTEM

Time: 3 Hours (26/12/2016) MAX. MARKS: 50

Instructions to Candidates:

- **Answer ALL FIVE full questions.**
- Missing data may be suitable assumed.

1A.	Under what situations, decision making becomes necessary?					
1B.	Explain decision tree with a suitable example					
1C.	A company wishes to buy new equipment X or Y, both satisfying all the requirements. The project requiring one of these two equipments is expected to last 2 or 3 years. The initial cost of X is \Box 6, 00,000 and of Y is \Box 4, 50,000. Operating cost/year of X is estimated at \Box 30,000 or \Box 40,000 or \Box 50,000 while for Y it is estimated at \Box 80,000 or \Box 90,000. Which equipment would you select if you are the decision-maker in that company, based on (i) Laplace principle with expected values, (ii) Least regret principle (iii) Hurwicz criterion	(06)				
2A.	Rewrite the following LPP in its standard form and indicate the IBFS. Minimize $Z = 4x_1 + 8x_2 + 12x_3$ Subject to $12x_1 + 16x_3 \le 20$ $20x_1 + 4x_2 + 24x_3 = 28$ $32x_1 + 36x_3 \ge 8$ and $x_1, x_2, x_3 \ge 0$	(02)				
2B.	Solve the following LPP using Big M method Minimize $Z=10x_1+15x_2+20x_3$ Subject to $2x_1+4x_2 +6x_3 \geq 24$ $3x_1+9x_2+6x_3 \geq 30$ And $x_1,x_2,x_3\geq 0$	(08)				

CIE 5102 Page 1 of 2

3A.	Distinguish between PRIMAL & its DUAL								(02)	
	Find the IBFS using VAM and optimal solution by MODI (u-v) method. The Profits in the cells are in thousands of \Box Destination								(00)	
	D ₁ D ₂ D ₃ D ₄ Supply									
3B.	Plant	P ₁	D ₁	180	D ₃	D ₄ 220	200	лу		(08)
		P_2	100	140	260	170	100			
		Demand	75	100	100	30	100			
4A.	Write the	canonical	form of	assignme	ent mod	el				(01)
	The matrix below gives the processing time in days. How the five different Jobs should be assigned to five different Engineers such that the total processing time is minimized.									
			Б1	Ε0		ineers	7.4	D.5		
		т1	E1	E2	E3		2	E5	7	
		J1	10	12	15		.2	8		
4B.	Jobs	J2	7	16	14	1	4	11	_	(09)
		Ј3	13	14	7	!	9	9	-	
		J4	12	10	11	1	.3	10	-	
		J5	8	13	15	1	.1	15		
5A.	Write a note on importance of random number generation in management problems								(02)	
	Use Dynamic Programming to solve the following LPP									
	Julyilailii	_	_	6x ₁ +10x		,g L.I	•			
5D		Subject		$x_1 \leq 8$						(04)
5B.	$x_2 \le 12$								(04)	
	$3x_1 + 2x_2 \le 36$									
	And $x_1, x_2 \ge 0$									
	A management consultant is an expert in his field. The number of clients approaching									
	him appears to be Poisson distributed with a mean of 6 clients per hour. The consultant attends the clients on a first-come-first-served basis and the clients wait if the need be.									
	The consultant is such an expert that, he can attend the clients at an average rate of 10									
5C.	per hour with the service time exponentially distributed. Determine the,								(04)	
	(i) probability of the number of arrivals (0 through 5) during a 15 minute interval(ii) average length of the queue having at least one client									
		-	(iii)average waiting time in the queue							

CIE 5102 Page 2 of 2