

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

## I SEMESTER M.TECH. (STRUCTURAL ENGINEERING)

## **END SEMESTER EXAMINATIONS, JAN 2017**

SUBJECT: ADVANCED MECHANICS OF SOLIDS [CIE 5151]

## REVISED CREDIT SYSTEM ( /01/2017)

Time: 3 Hours

MAX. MARKS: 50

## Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

| 1A.          | For plane stress case, obtain the stress components in term of strain components.                                                                                                                                                                    | 5  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1B.          | The data from a Delta rosette are given as $\varepsilon_{0^{\circ}} = 330 \times 10^{-6}$ ; $\varepsilon_{60^{\circ}} = 240 \times 10^{-6}$ and $\varepsilon_{120^{\circ}} = -300 \times 10^{-6}$ . Find the principal strains and their directions. | 5  |
| 2.           | State of stress at a point in a strained body is given: $\sigma = \begin{bmatrix} 20 & -40 & -65 \\ -40 & 50 & 20 \\ -65 & 20 & -25 \end{bmatrix} MPa.$                                                                                              | 10 |
|              | Determine the three principal stresses and associated principal planes.                                                                                                                                                                              |    |
| 3A.          | Analyze for stresses in a cantilever beam subjected to pure bending considering the Airy's stress function $\phi = Dy^3$ . Take origin at fixed support.                                                                                             | 5  |
| 3B.          | Determine the radial and tangential stress for a hollow cylinder subjected to uniform pressures at inner edge of ' $\sigma_i$ ' and at outer edge of ' $\sigma_o$ '. The inner radius is 'a' and outer radius is 'b'.                                | 5  |
| <b>4</b> A.  | Derive the governing differential equilibrium equation for a rectangular plate subjected to uniform loading.                                                                                                                                         | 5  |
| 4 <b>B</b> . | Obtain the equation of elastic surface of a simply supported rectangular plate subjected to a load ' $q_o$ ' over an area 'uv', having centroid location at (s,p).                                                                                   | 5  |
| 5A.          | Obtain the expressions for deflection of an annular plate simply supported at outer edges ( $r = a$ ) and loaded by shear force 'P <sub>1</sub> ' at the inner edge ( $r = b$ ).                                                                     | 5  |
| 5B.          | Derive the expression for Gaussian curvature and classify the shells based on Gaussian curvature.                                                                                                                                                    | 5  |