

MANIPAL INSTITUTE OF TECHNOLOGY

I SEMESTER M.TECH. (CIVIL ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: ADVANCED MECHANICS OF SOLIDS [CIE 5151]

REVISED CREDIT SYSTEM (/11/2016)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

	The general displacement fields in a body in Cartesian coordinate system is given by	5
1A.	$u = 3x^2y + y^2$; $v = 3yz + xy$; $w = 4xz^2 + 5xy^2$. Find strain tensor and the linear strain	
	at the point (1, -3, 2) in the direction (0.6, 0.53, -0.6).	
1 B .	Derive the stress compatibility conditions for plane stress condition (2D).	5
2.	State of stress at a point in a strained body is given: $\sigma = \begin{bmatrix} 30 & -45 & -65 \\ -45 & 45 & 30 \\ -65 & 30 & -25 \end{bmatrix} MPa$	10
	Determine the three principal stresses and associated principal planes.	
3A.	Analyze for stress in a cantilever beam of span 'L', unit width and depth '2C', subjected to point load at free end, considering Airy's stress function $\phi = Bxy + Dxy^3$. Take origin at fixed end.	5
3B.	Derive the strain displacement relations in 2D polar co-ordinate system.	5
4A.	For a thin rectangular plate subjected to uniformly distributed load, obtain the expressions for Kirchhoff's shear forces in terms of vertical displacement 'w'.	5
4 B .	For a simply supported plate subjected to uniform constant lateral load ' q_o ' using Navier's solution, obtain the expressions for deflection and moments.	5
5A.	Obtain the expressions for deflection and moment of an annular plate simply supported at outer edges, and loaded by edge moments M_1 at the inner edge (r = b) & M_2 at outer edge (r = a).	5
5B.	With usual notations for a shell element, obtain the stress resultants in terms of strains and curvature.	5