

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

A Constituent Institution of Manipal University

I SEMESTER M.TECH. (COMPUTER SCIENCE AND INFORMATION SECURITY) MAKE UP EXAMINATIONS, DEC 2016/JAN 2017

SUBJECT: NUMBER THEORY AND CRYPTOGRAPHY [CSE 5121]

REVISED CREDIT SYSTEM (03/01/2017)

Time: 3 Hours

MAX, MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

passes the Miller Rabin Test. Indicate all the steps.

1A.	You are trying to cryptanalyze an affine enciphering transformation of a	
	single-letter message units in a 37 letter alphabet. This alphabet includes the	
	numerals 0-9, which are labeled by themselves. (i.e. by the integers 0-9). The	
	letters A-Z have numerical equivalents 10-35, respectively, and blank=36.	4M
	You intercept the ciphertext "OHF7F86BB9". You know that the plaintext	
	ends with the signature "007" (Zero, Zero, Seven). What is the message?	

1B.	Find an integer that has a remainder of 3 when divided by 7 and 13 but is divisible by 12.	3M
1C.	Write the algorithm for Miller –Rabin primality test.and check whether 561	3M

- 2A. With a neat diagram explain the IDEA encryption algorithm **4M**
- 2B. With an example explain the class of Complementary problems in NP. 3M
- 2C. What do you mean by algebraic structures? List the properties of the Ring 3M R=< S, +, .>
- Derive the expressions for addition of two points P=(x1,y1) and Q=(x2,y2) on 3A. **4M** elliptic curves.
- 3B. With a neat diagram explain the concept of public key cryptosystem. What 3M are the security and efficiency requirements of public key cryptosystem?

- 3C. Explain RSA pseudorandom bit generator. Construct an instance of a RSA pseudorandom bit generator for p=7 and q=11, n=8, seed=3, e=5. Create a sequence of bits by extracting the three less significant bits from each integer. What is the period of the sequence?
- **4A.** With a neat diagram explain the DES key scheduling algorithm**4M**
- 4B. What is hashing. Explain the properties and the major classes of hash functions
 3M
- 4C. What are fail stop signatures? What are the conditions that a fail-stop signature must satisfy?3M
- 5A. Explain how the interactive proof for the QNR problem proceeds and show how the proof system satisfies the completeness and soundness property.4M
- 5B. Given an A-code in the form of its authentication matrix shown in Table Q.5.B., determine the set of encoding rules E, the set of tags T, the set of source states S and the set of cryptograms M. Assume that the communicants have agreed to use the encoding rule e 3. What are the cryptograms for all possible messages? Is the cryptogram (s1,2) valid?

Table Q.5.B

E\S	s1	s2	s3
e1	1	2	3
e2	2	3	1
e3	3	1	2
e4	1	3	2
e5	3	2	1
e6	2	1	3

5C. Explain the following variants of RSA (i)Rabin scheme (ii)Williams scheme.

2M

4M