Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

I SEMESTER M.TECH (POWER ELECTRONICS & DRIVES)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: MODELLING AND ANALYSIS OF POWER ELECTRONIC SYSTEMS **AND ELECTRICAL MACHINES [ELE5123]**

REVISED CREDIT SYSTEM

Time: 3	B Hours	Date: 01 December 2016	MAX. MARKS: 50
Instructions to Candidates:			
•	Answer ALL the questions.		
•	 Missing data may be suitab 	le assumed.	
1A.	A toroid core having radius 1mm. The radius of the cros 500mA is flowing through inductance of the coil. Negle 800.	10cm is wound by 100 turn coil. The core h ss section is 5mm. Leakage factor is 1.2 and the wire. Determine the flux in the cor- ect fringing effect. Take the relative permea	as an air gap of a dc current of e and the self- bility of core as 05
1B.	Derive the dynamic model principles. Transform all qua	of a two phase cylindrical rotating mach antities to the stator side.	nine from basic 05
2A.	Transform the three phase of transformation is mmf and p	quantities(abc) to two phase quantities(dqo) bower invariant.	. Prove that the 05
2B.	Explain the different refere Highlight the advantages and	ence frames used to model the 3 phase ind d applications of each reference frame.	uction machine. 05
3A.	From the basic principles derive the dynamic model of a separately excited dc machine. Represent the model in the block diagram form. (The field current is kept constant). 05		
3B.	The equivalent circuit model of a closed loop converter system is shown in Fig.1.Express the output voltage variation $\hat{v}(s)$ as a linear combination of control input variation $\hat{d}(s)$, power input variation $\hat{v}_g(s)$ and load current variation $\hat{\iota}_{load}(s)$.		
	D		

- **4A.** A flyback converter operates in continuous conduction mode. The MOSFET has onresistance R_{on} , and diode has a constant forward voltage drop V_D .
 - a) Derive a complete steady state equivalent circuit model.
 - b) Derive an analytical expression for the converter efficiency.
- **4B.** Cascade a boost and buck converter realized using SDPT switches. Simplify the circuit in such a way that only one SPDT switch is used. Replace the SPDT switch with semiconductor switch.
- 5. A boost converter is operated in continuous conduction mode.
 - a) Determine the nonlinear averaged equation of this converter.
 - b) Construct an equivalent circuit that corresponds to the boost converter small-signal ac equations.
 - c) Manipulate your circuit to canonical form.

Derive analytical expressions for the control-to-output and line-to-output transfer functions $G_{vd}(s)$ and $G_{vg}(s)$ assuming capacitor esr r_c in series with the capacitor. Express your results in standard normalized form.

10

06

04