

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

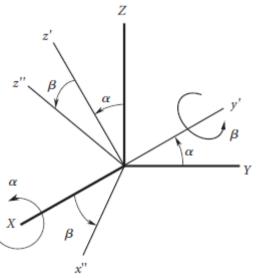
FIRST SEMESTER M.TECH. (AEROSPACE ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: ORBITAL MECHANICS [ICE 5103]

Time: 3 Hours

MAX. MARKS: 50

2


4

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.
- **1A.** Derive the two-body equation of motion.
- **1B.** The elements of the Magellan mapping orbit about Venus are as follows: a = 10,424.1 km
 - e = 0.39433

The mapping pass is started at a true anomaly of 280 deg. What are the altitude, flight path angle, velocity, and time since periapsis at this point?

- 1C. At a given instant the position **r** and velocity **v** of a satellite in the geocentric 4 equatorial frame are: $\vec{r} = 12670 \hat{K} (km)$, $\vec{v} = -3.874 \hat{j} 0.7905 \hat{K} (\frac{km}{s})$. Find the orbital elements.
- 2A. Calculate the transformation matrix [Q] for the sequence of two rotations: $\alpha = 40^{\circ}$ 4 about the positive X axis, followed by $\beta = 25^{\circ}$ about the positive y'axis. The result is that the *XYZ* axes are rotated into the x''y'z'' axes.

2B. What is the inertial position vector of a point 6.378 km above mean sea level on the equator, 57.296⁰ W longitude at 0600 GMT, 2 January 1970? [Note: Assume Day 1=1 January 1970]

2C.	Describe the process of improving the preliminary orbit by differential correction method.	3
3A.	Illustrate solution of gauss problem using 'f' and 'g' series.	4
3B.	Illustrate the sensitivity of Hohmann transfer due to small inaccuracies of the transfer injection impulse.	3
3C.	A spacecraft is in a 300 km circular parking orbit. It is desired to increase the altitude to 600 km and change the inclination by 20° . Find the total delta-v required if (a) the plane change is made after insertion into the 600 km orbit (so that there are a total of three delta-v burns); (b) the plane change and insertion into the 600 km orbit are accomplished simultaneously (so that the total number of delta-v burns is two); (c) the plane change is made upon departing the lower orbit (so that the total number of delta-v burns is two).	3
4A.	On 15 August 2005 a spacecraft in a 190 km, 52^0 inclination circular parking orbit around the earth departs on a mission to Mars, arriving at the red planet on 15 March 2006, whereupon retro rockets place it into a highly elliptic orbit with a periapsis altitude of 300 km and a period of 35 hours. Determine the total delta-v required for this mission.	5
4B.	Define a lunar trajectory using the patched conic technique assuming circular coplanar transfer. Calculate the elements of the transfer ellipse and the arrival hyperbola given the following: Injection velocity at perigee of transfer ellipse = 10.738 km/s Injection altitude = 500 km Arrival angle λ = 30 deg	5
5A.	Explain stability and dynamics at Lagrangian points.	4
5B.	Describe Cowell's method in orbit perturbation.	3
5C.	Determine the semi-major axis of an earth satellite orbit with eccentricity = 0.17 and $\dot{\omega} = 0$ and the orbit is sun-synchronous.	3