

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

I SEMESTER M.TECH. (COMPUTER AIDED ANALYSIS AND DESIGN) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: ADVANCED MECHANICAL VIBRATIONS [MME 5102]

REVISED CREDIT SYSTEM (26/11/2016)

Time: 3 Hours

MAX. MARKS: 50

02

04

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A. Distinguish between

- i) Vibration Isolation and Vibration Absorption
- ii) Principle mode and Normal mode of Vibration
- iii) Frequency Response and Time Response
- iv) Linear and Nonlinear systems.
- 1B. A horizontal shaft is supported between bearings (simply supported). At the centre of the shaft, a disc of mass "m" is mounted. The lateral stiffness of the shaft is "k". Due to manufacturing inequalities, the centre of gravity is shifted by a distance "e" from the geometric centre. The lubrication at the bearings provides a damping of "c". Derive the expression for the lateral deflection of the shaft in terms of eccentricity "e" and angular velocity 'ω'.
- **1C.** Determine the natural frequency of a spring mass system, considering the mass of the spring.
- 2A. An automobile chassis has a mass of 600 kg and the total spring constant of its suspension system is 58 kN/m. If the profile of a stretch of a road which it travels at a speed of 60 kmph may be approximated as a sinusoidal profile (rumblers) with peak to peak distance of 100 mm and a wave length of 1.0 m determine the steady state amplitude as well as amplitude corresponding to resonance condition. Assume a damping factor 03 of 0.05.
- 2B. What is the need for a dynamic vibration absorber? Explain its working principle with a neat sketch.
- **2C.** Give a brief outline of the Lanczos procedure for Eigen Value Problems. **03**
- **3A.** Explain the design principles of Accelerometer and Vibrometer. **03**

3B.	Describe the Lindstedt's perturbation method for solution of equations describing Nonlinear vibrations.	04
3C.	With a neat sketch explain what is meant by a 'limit cycle'	03
4A. 4B.	Explain Sub harmonic oscillations of Nonlinear systems with a neat sketch. Explain time and frequency domain analysis with respect to machine condition monitoring	03 03
4C.	Derive the free vibration equation for longitudinal vibrations of bars and obtain its solution.	04
5A.	Using Holzer's method, determine the length 'L' of the shaft shown in figure Q5A, given that its fundamental frequency is 150 rad/sec. Use $K_t = 2x10^6$ Nm/rad; $J_1 = J_2 = 10 \text{ kgm}^2$; $J_3 = J_4 = 30 \text{ kg} \cdot \text{m}^2$ G= 80 GPa ; shaft diameter = 10 cm.	04
5B.	With a neat sketch explain the working of a Linear Variable Differential Transformer (LVDT).	04
5C.	Define the following with respect to random processes 1. Standard Deviation 2. Autocorrelation 3. Spectral Density	

4. Covariance

02

Figure Q 5A