Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

V SEMESTER B.TECH (AERONAUTICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: PE-I: NAVIGATION GUIDANCE AND CONTROL [AAE 4009]

REVISED CREDIT SYSTEM

Time: 3 Hours 31/12/2016 MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- * Missing data may be suitable assumed.

1A.	Define the Navigation, Guidance and Control with neat diagram.	(02)					
1B.	Explain the engagement geometry for deviated pursuit guidance. Find the	(05)					
	time of interception and discuss the trajectory in (V_{θ}, V_{R}) –space.						
1C.	What are the differences between SNS & INS? Explain their working	(03)					
	principle.						
2A.	Sketch a tactical missile and identify the important subsystems.						
2B.	Derive the mathematical model and design a state feedback controller of	(04)					
	balancing a pointer. The desired closed -loop poles are -4 & -5. Discuss the						
	open loop stability.						
2C.	Draw and explain the block diagram of pulse radar and CW Doppler radar.	(04)					
3A.	Explain the working principle and components of DGPS.	(02)					
3B.	Derive the radar range equation with neat diagram.	(03)					
3C.	Derive the multi-layer perceptron model and explain the neural network	(05)					
	control scheme of a robotic link with neat diagram.						
4A.	Explain the difference of tactical and strategic missile.	(02)					
4B.	Write the principle of DME. Briefly explain the DME system installed on	(03)					
	ground and in aircraft with neat diagram. What are the frequencies and range						
	of operation?						
4C.	Discuss the necessary conditions for optimality of a dynamic system of order	(05)					

AAE 4009 Page 1 of 2

n,
$$d\mathbf{x}/dt = A\mathbf{x} + B\mathbf{u}$$
; $\mathbf{x}(0) = \mathbf{x}_0$

- **5A.** Draw the missile-target engagement geometry for PPN guidance law. (02)
- **5B.** Derive the expression for miss-distance between two objects moving in a **(03)** straight line. Also, obtain the expression for the time at which the miss-distance occurs.
- **5C.** Derive the equation $\hat{X_k} = K_k Z_k + [1 K_k] \hat{X_{k/k-1}}$ of a dynamic system by combining measurements and prediction in Kalman filter. Sketch the neat diagram of discrete Kalman filter implementation steps.

AAE 4009 Page 2 of 2