

V SEMESTER B.TECH (AERONAUTICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: PE-I: NAVIGATION GUIDANCE AND CONTROL [AAE 4009]

REVISED CREDIT SYSTEM

Time: 3 Hours

29/11/2016

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitable assumed.
- **1A.** What are the major sub-components of the guidance subsystem? Explain **(03)** with a block diagram.
- **1B.** Explain the VOR operation with diagrams.
- **1C.** Explain the engagement geometry of pure pursuit guidance laws and discuss **(04)** the trajectory in (V_{θ}, V_{R}) –space.

2A. Explain the basic principle of INS system to determine position and velocity (02) estimate with neat diagram.

2B. What is Doppler effect?

(02)

(02)

(03)

2C. Derive the state feedback gain vector k(Bass-Gura) formula. Design a state (06) feedback controller for mass-spring-damper system with desired closed loop characteristic equation with 10 % overshoot, 5 second peak time and 8 second settling time. Mass=10, other k=1, c=1, f=step input and q is position change (All are in SI unit. Assume if require any other parameter).

- **3A.** What is LOS guidance law?
- **3B.** What is GNSS-INS integration scheme? Sketch the three major integration (03)

scheme of GNSS-INS.

3C. For a given linear system $d\mathbf{x} / dt = A\mathbf{x} + B\mathbf{u}$; $\mathbf{x}(0) = \mathbf{x}_0$, Find the $\mathbf{u}(t)$ (open (05) loop optimal control solution); $0 \le t \le t_f$, such that the objective function,

$$J = (1/2)\mathbf{x}^{\mathsf{T}}(t_f)\mathbf{S}_f\mathbf{x}(t_f) + (1/2)\int [\mathbf{x}^{\mathsf{T}}(t)\mathbf{Q}\mathbf{x}(t) + \mathbf{u}^{\mathsf{T}}(t)\mathbf{R}\mathbf{u}(t)]dt$$
 is minimized.

Solve the optimal control input to consider balancing a pointer model.

- **4A.** Draw the missile-target engagement geometry for TPN guidance law. **(02)**
- **4B.** Sketch the diagram and explain the neural network layer of a given equation: (03)

$$y_{k} = \sum_{j=1}^{N_{h}} \left[W_{ik} \cdot \sigma_{j} \left(\sum_{i=1}^{n} V_{ij} \cdot X_{i} + \theta_{vi} \right) + \theta_{vk} \right], k = 1, 2..., m. \text{ Briefly explain its application}$$

in neuro-adaptive control.

4C. Explain the block diagram of FM-CW radar and derive the beat frequency **(05)** variation in it with neat diagram.

In FM-CW Radar, transmitting at an average frequency of 300 MHz. The rate of triangular modulation is 60 Hz & peak to peak frequency is 50 kHz. Aircraft Velocity with FM-CW Radar is 400 m/s and Target velocity is 600 m/sec. Aircraft and target makes 40 degree and 60 degree angle respectively from LOS. Distance between initial LOS= 50 km. Calculate the beat frequency variation during FM cycle and sketch it.

- 5A. Define the following terms: Latax, Line-of-Sight (LOS), Miss-Distance, Time- (04) to-Go, Fire-and-Forget, Glint Noise, Collision Triangle with equation and diagram.
- **5B.** What are the differences between PPN & TPN? (02)
- **5C.** What is Kalman Filter? Derive the optimal estimator or observer (04) $\hat{X}_{k} = [\phi_{k} - K_{k}H\phi_{k}]\hat{X}_{k} + K_{k}Z_{k}$ for a given plant model: $X_{k/k-1} = \phi_{k-1}X_{k/k-1} + w_{k-1}$ and measurement equation $Z_{k} = HX_{k} + v_{k}$. Prove that above estimator is time varying.