

MANIPAL INSTITUTE OF TECHNOLOGY

V SEMESTER B. TECH (AERONAUTICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: ROCKET PROPULSION [AAE 3103]

REVISED CREDIT SYSTEM

(01/12/2016)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

on of Manipal University

- ✤ Missing data may be suitable assumed.
- A liquid rocket engine with oxidizer to fuel ratio of 5:1 produces a thrust of 1 MN. The (03) initial mass of rocket engine is 100,000 kg and its mass at burn out is 10,000 kg. the characteristic velocity C* and thrust coefficient C_F of the engine are 2386 m/s and
 - 1.4 respectively.
 - i. Find the mass flow rate of fuel.
 - ii. If initial velocity of engine is 2.5 km/s, find the velocity of rocket at burn out.
- **1B.** Show that the maximum mass flow rate per unit area occurs at the throat of a C-D **(04)** nozzle and find its value.
- **1C.** What are the desirable physical properties of liquid propellants? (03)
- 2A. A stationary two stage rocket with initial mass of 16,000 kg, carrying a payload of (03) 1000 kg, is fired in a vertical trajectory from the surface of the earth. Both the stages of the rocket have same specific impulse, ls, of 300 s and same structural coefficient of 0.14. The acceleration due to gravity is 9.81 m/s². Considering both stages with same payload ratio, find the terminal velocity attained by the payload.
- **2B.** Derive rocket equation. (03)
- 2C. What is burn rate? How is it influenced by the combustion chamber pressure and (04) temperature?
- 3A. The following measurements were made in sea level of a solid rocket motor: (06)
 Burn rate = 40 sec, Initial mass before test = 1210 kg,

Mass of motor after test = 215 kg, Average thrust = 62,250 N, Chamber pressure =

7 MPa, Nozzle exit pressure = 0.07 MPa, Nozzle throat diameter = 0.0855 m, Nozzle exit diameter = 0.2703 m. Determine:

- i. Propellant flow rate, nozzle exit velocity, Characteristic velocity, effective exhaust velocity and specific impulse at sea level.
- ii. Find Specific impulse at 1000 and 25,000 m altitude.

[Take P1000m = 0.0898 MPa and P 25,000m = 0.00255 MPa]

3B. A solid rocket motor is designed with a cylindrical end-burning propellant grain of (02) length 1 m and diameter 32 cm. The density of the propellant grain is 1750 kg/m³. The specific impulse of the motor is 190 s and the acceleration due to gravity is 9.8 m/s². Find the thrust produced by the rocket motor if the propellant burns for a period of 150 s.

3C.	Describe the following terms related to solid rocket motor:				(02)
	i.	Double base propellant	iii.	Ablatives	
	ii.	Additives	iv.	Binder	
4A.	With a neat sketch, explain the working of nuclear thermal rockets.				(03)
4B.	What are the parts of an lon propulsion system? Explain.				(03)
4C.	What are the different thrust vector control methods in rocket engines?				(04)
5A.	Write i.	a brief note on the following: Inlet buzz			(03)
	ii. Mixed compression inlets				
5B.	Explai	n briefly about combustion in Ramjet and Scram	njet en	gines.	(03)
5C.	Hot combusted gas enters the SCRamjet nozzle at a static temperature (T ₁) of K and static pressure (P ₁) of 300 kPa and Mach number (M ₁) of 2. The flight s is (V _∞) 2000 m/s at an altitude where the ambient pressure (p _∞) is 1000 Pa, and area of the nozzle entrance is (A ₁) $0.01m^2$.				(04)
	If the nozzle exit area is (Ae) 0.12 m^2 and flow throughout the nozzle is isentropic				
	with R = 289 J/kgK and Υ =1.25, find:				
	i. Total temperature and pressure in the nozzle.				
	ii. Mass flow rate through the nozzle.				
	iii. Exit Pressure and Mach number				

iv. Thrust produced by the nozzle