	_	_	 _	 	 	 _
Reg. No.						

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

V SEMESTER B.TECH (BIOTECHNOLOGY)

END SEMESTER EXAMINATIONS, NOV/DEC 2016 (REGULAR)

SUBJECT: BIOREACTION ENGINEERING (BIO 3104)

REVISED CREDIT SYSTEM

Time: 3 Hours (3/12/2016) MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitable assumed.

1A.	With the su					•		ecting t	he rate	reaction	4
1B.	The second submerged proposed. A ⇔ P + C Q* → R* + S R*+Q* → 2I A is a suintermediate can explain	dary me I fermer Q* S P ubstrate tes. Pro	etabolite ntation e, P a ove that	es (P ar process nd S : above	nd Q) and Q) and Q) and Q) are me propose	re prod ollowing etabolic sed med	uced us g mecha produ chanism	anism h	as been d R*& sistent v	Q* are	
1C.	Write the ty	pe of th	he inter	mediate	es gene	rally pr	oposed	in kinet	ic mode	elling	2
2A.	A zero order homogeneous gas reaction A $\rightarrow \gamma$ R proceeds in a constant-volume batch reactor, π =1 when t=0 and π =1.5 when t=1 hour. If the same reaction, same feed composition and initial pressure proceeds in a constant pressure setup, find V at t=1 if V=1 at t=0										
2B.	What do you mean by shifting order reactions? How do find the kinetics in the following shifting order reactions							5			
2.4	The following data are obtained at 0° C in a constant-volume batch reactor using pure gaseous A. The stoichiometry of the decomposition is A \rightarrow R. Find a rate equation which satisfactorily represents this decomposition								6		
3A.	Time, min	0	2	4	6	8	10	12	14	∞	
	Partial Pressure of A, mm	760	600	475	390	320	275	240	215	150	

BIO 3104 Page 1 of 2

3B.	A plug flow reactor $(2m^3)$ processes an aqueous feed (100 liter/min) containing reactant A $(C_{A0}=100 \text{ mmol/liter})$. This reaction is reversible and represented by A \Leftrightarrow R $-r_A=(0.04 \text{ min}^{-1})$ C_A - (0.01 min^{-1}) C_R . First find the equilibrium conversion and then find the actual conversion of A in the reactor.									
4A.	The Kinetics of the aqueous-phase decomposition of A is investigated in two mixed flow reactors in series, the second having twice the volume of the first reactor. At steady state with a feed concentration of 1 mol A/liter and mean residence time of 96 sec in the first reactor, the concentration in the first reactor is 0.5 mol A/liter and in the second is 0.25 mol A/liter. Find the kinetic equation for the decomposition									
	We wish to treat 10liters/min of liquid feed containing 1 mol A/liter to 99% conversion. The stoichiometry and kinetics of the reaction are given by									
4B.	$A \rightarrow R$, $-r_A = \frac{1C_A}{0.2 + C_A} \frac{mol}{liter.min}$	6								
	Suggest a good arrangement for doing this using two mixed flow reactors, and find the size of the two units needed. Sketch the final design chosen									
5A.	Chemostat of 1000 liters capacity is used for the production biomass using glucose as the substrate. The microbial system follows a Monod growth kinetics with $\mu_m = 0.4 \ h^{-1}$, $K_S = 1.5 \ g/l$ and the yield factor Y $_{X/S} = 0.5 \ g$ biomass/g substrate consumed. The sterile feed containing 10g/l substrate is pumped at 100 L/h to the chemostat. i. Determine the substrate and biomass concentrations at steady state									
	ii. Estimate the washout dilution rate The following data were obtained from a non-ideal bioreactor during the RTD experiment using NaCl as the tracer material. Calculate i. The mean residence time of fluid in the bioreactor ii. Draw the E (θ) vs θ curve RTD data:									
5B.	Time (min) 0 5 10 15 20 25 30 35 Tracer conc. (g/l) 0 3 5 5 4 2 1 0	7								
	A step input to a non-ideal bioreactor gives the results shown the following									
	fig. If the data is consistent determine: (i) F-curve (ii) E-curve	l								
5C	Non-ideal bioreactor Vo=4 lit/min	3								
	m= 0.5 <u>mol</u> /min 1 3 t (min)									

BIO 3104 Page 2 of 2