

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

V SEMESTER B.TECH. (BIOTECHNOLOGY / CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: MICROBIAL TREATMENT OF WASTEWATER [BIO 4003]

REVISED CREDIT SYSTEM (01/12/2016)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

The following test results were obtained for a treated wastewater sample. Using
the value of the activity coefficient for a divalent ion, estimate the equilibrium
concentration of calcium in solution needed to satisfy the solubility product for
calcium carbonate (CaCO ₃) at 25°C. The value of the solubility product constant
K _{sp} at 25°C is 5 X 10 ⁻⁹ .

1A.		Cation	Cor	cent	ration	(ppm)	A	nion	C	oncent	ration	(ppm)		5
		Ca ²⁺		1	21.3		H	CO_3^-			280				
		Mg^{2+}		3	36.2		S	O_4^{2-}			116				
		Na ⁺			8.1		(Cl-			61				
		\mathbf{K}^+			12		N	O_{3}^{-}			15.6				
1B.	indus Deter volatil in mg to cor Tare Mas Tare Mas Mas	ollowing trial facili mine the le susper /L. The s nstant we mass of s of evap mass of s of evap s of evap s of evap	ty. All conce add s ample eight f evap coratir coratir f Wha atman atman	of the entra- solids es use oratir ng dis tman GF/C GF/C	e test tion o , tota ed in ng dis sh plu GF/C C filte C filte	s were f total s l dissol the sol h = 54 s resid s resid c filter a r and re r and re	perfo solids, lved s ids an .6422 ue aft ue aft and re esidue	rmed total olids a alyse g er eva er ign side a after e ignit	using volatile and tot s were aporation ition at after dr drying ion at 5	a sam e solid al vola all eit on at 1 550°C ying a j at 10	ple siz s, sus atile di her, d $105^{\circ}C$ C = 54 t 105° $5^{\circ}C =$ $= 1.5^{2}$	ze of spend ssolv ried, o = 54. .6722 C = 1 1.555 453 g	100 mL ed solid or ignite 7022 g 2 g .5348 g 53 g	ds, ds ed	5
	Using Least square method, Compute <i>k</i> and <i>UBOD</i> for the following data reported for a stream receiving some treated effluent.														
2A.	Time	(<i>d</i>)	0	1	2	3	4	5	6	7	8	9	10		5
	BOD	(<i>mg/L</i>)	0	65	109	138	158	178	190	200	205	210	212		

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

2B.	A Constituent Institution of Manipal University B. What do you mean by TOC in municipal wastewater? How is it measure	ed?	2						
2C.	Determine the ThOD for Tryptophan ($C_{11}H_{12}N_2O_2$).								
3A.	Explain the Most probable number (MPN) analysis for the quantification of tota coliform bacteria using Presumptive, Confirmed, and Completed test.								
3B.	% by volume dead after 9 60 20	No. of Test animals dead after 96 h 20 18 16 12 6							
3C.	Estimate the amount of heat, surplus sludge and biogas formed during aerobic degradation of 1 mol of glucose (in an activated sludge system at a high BOD loading rate. Write the mass and energy balance for the over all process.								
4A.	Briefly explain the role of inorganic acceptor during biomass degradation.								
4B.	Time (h)00.31.22.32.93.44DP1265714323180167143123	hip, given	4						
4C.	 Determine rate constant for the degradation of cellulose. For glutamine (C₅H₁₀N₂O₃), use the Buswell equation and determine theoretically: a) the gas composition (% carbon dioxide and % methane) produced and b) the volume of methane produced from 1 kg of the biomolecules at NTP. 								
5A.	Explain the autotrophic and heterotrophic nitrification of municipal wastewater. Give reaction scheme for both the processes. What are the major microbial genera involved in each of the processes? Discuss about the nitrification process with both types of microorganisms in the same treatment system.								
5B.	Discuss in detail about the design considerations for Upflow anaerobic sludge blanket (UASB) process involving volumetric organic loading, upflow velocity, reactor volume, physical features and gas collection system.								