Reg. No.					
----------	--	--	--	--	--

V SEMESTER B.TECH.(CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: CHEMICAL REACTION ENGINEERING -I [CHE 3102]

REVISED CREDIT SYSTEM (29/11/2016)

Time: 3 Hours MAX. MARKS: 100

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- ❖ Missing data may be suitable assumed and indicated properly

1A.	At 227 ° C the rate of a bimolecular reaction is 10 times the rate of reaction at 127° C. Find the activation energy for this reaction (i) from Arrhenius law (ii) from collision theory. What is the percentage difference in the rate of reaction at 327 ° C predicted by these two theories?										(10)				
1B,	Sodium hydroxide (B) reacts with ethyl acetate (A) in liquid phase in a batch reactor under isothermal conditions. Develop the differential and also integrated rate equations for this reaction when (i) $M=1.0$ (ii) $M\neq 1.0$. How will you analyze of all these rate equations. Show the relevant graphs also.											(10)			
2A.	Explain the following methods used for kinetic analysis of the rate equations: (i) Method of excess (ii) Half life method.											(05)			
2B.	sucrose Starting		S acros	ucro:	se S ncent	Proration	oduct n of (s, us C _{A0} =	ing 1m	suc mo	rase as l/liter a	the e	enzyme n enzyi	e catalyst.	(15)
		CA * 10 ⁻² mmol/lit	84	68	53	38	27	16	9	4	1.18	0.6	0.25		
		t, hr	1	2	3	4	5	6	7	8	9	10	11]	
		ine whether k_3 C_A C_{E0} /									-		M.		

	Run No.	1		2		3				
	Space time, minutes	14.8		10	C	120	0			
	Reactor exit concentration,(mol/lit)	1.5		1.0)	0.5				
3B.	For a liquid phase reaction A → R the k following table. You are planning to op size of MFR is required to achieve 759 A/hr at a C _{A0} = 1.2 mol/lit? (ii). What is operating conditions (iii) When (at what equal that of an MFR under identical operations of the conditions of the conditions (iii).	erate a flow % conversion the size of P t conversion	reacton of fe FR re Will	or for the ed stread quired the vol	is reac am of under	etion. (i) 1000 mo the abov	What ol of we	(12)		
	C _A ,mol/lit 0.1 0.2 0.3 0.4 (r _A),mol/lit.min 0.1 0.3 0.5 0.6	0.5 0.6 0.5 0.25	0.7	0.8	1.0	1.3 0.045	2.0 0.042			
4A.	The homogenous gas reaction A \rightarrow 3R follows second- order kinetics. Develop an expression for the volume when this reaction conducted a PFR.									
4B.	The homogenous gas reaction A → 3R follows 3 and 350 °C, an exploration of pure A at 5 atm and 350 °C, an exploration of 50% A and 50% Inerts at 25 atm (i) How many 2.5 cm ID, 2m long pip (ii) Should they be placed in parallel or Assume plug flow in the pipe, negligible processing the sum of the pipe of the pipe of the sum of the pipe of the sum of the pipe of the pi	xperimental recommercial part and 350 °C pes are required series?	eactor blant is to obted?	consisti to treat tain 80%	ng of a 320m3 6 conve	2.5 cm l 3/hr of fe ersion.	D , 2m	(12)		
5A.	Explain the step by step graphical procedure for a given reaction for: (i) the determination of exit concentration of CSTR cascade of 3 equal size tanks (ii) the determination of the exit concentration of reactor cascade of 3 unequal size tanks (iii) the determination of N equal size tanks for the given exit concentration (iv) the determination of N unequal size tanks for the given exit concentration. Give the relevant equations used in the procedure.									
5B.	Consider the elementary consecutive reactions: $A \rightarrow B \rightarrow C$ with unequal rate constants for both the steps is conducted in a CSTR. Derive expressions for ζ_{max} and C_{Bmax} . Show the variation of concentration of A, B and C with respect to time in a graph. List the assumptions you make.									