MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

V SEMESTER B.TECH. (CHEMICAL ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: COMPUTATIONAL METHODS IN CHEMICAL ENGINEERING [CHE 3105]

REVISED CREDIT SYSTEM (05/12/2015)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

	Find the temperatu	re distribution	inside a square p	late taking $\Delta x = \Delta$	Ay = 0.25 if it follow	vs the model	
1A.	$\pi^{2} \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = 0 \qquad 0 \le x \le 1, 0 \le y \le 1$ With the boundary conditions of $u(x,0) = 0 \qquad u(x,1) = 2(1-x^{2}) \qquad 0 \le x \le 1$ $u(0,y) = \sin(\pi y) \qquad u(1,y) = e^{\sin(\pi y)} 0 \le y \le 1$ Use Gauss Seidel method						
1B.	Constant volume batch reactor with reaction A \rightarrow B and 2nd order reaction can be modeled as $\frac{dX_A}{dt} = kC_{A0}(1 - X_A)^2$ if kC _{A0} =10 ⁻⁴ L/(mol-s), Calculate the time required to reach 90% conversion using composite Simpson's 1/3 rd rule with n=5						
2A.	Find the Prandtl r T (K) Cp (kJ/mol.K) T (K) μ (μ Pa.s) T (K) K (W/m.K)	105 0.034853 91 3.6388 110 11.350	ane at 118 K usin 110 0.035378 100 3.9976 115 12.062	ng the data given 115 0.036016 105 4.1951 120 12.811	below 120 0.036786 120 4.3034 125 13.604		16
2B.	Discuss the import	ance of compu	tational methods	in engineering wi	ith applications		4

Consider a continuous stirred tank reactor of diameter 1.25 m and height 2.6 m which is 80% filled initially with pure water at 20°C. At time t=0, 15% salt solution at 25°C is entering the CSTR with a mass flow rate of 15 kg/min and leaves at 10 kg/min. The CSTR is heated using steam at 250°C in a 20 3A. coil with overall heat transfer coefficient 189 W/m^2K and effective heat transfer area 1.1 m². Calculate the concentration and temperature of the stream leaving the CSTR after 3 minutes using Runge-Kutta 4th order method.

Use Colebrook equation to calculate the friction factor for flow of a fluid in a pipe with $\epsilon/D = 10^{-4}$ and $N_{Re} = 10^5$

 $=\frac{1}{[0.86\ln(\frac{\varepsilon}{\overline{D}}+\frac{2.51}{N_{Re}\sqrt{f}}]^2}$ Use Regula Falsi method

The analysis of a two-stage distillation column to separate 1-butene from a mixture of 1-butene, butadiene and propane has resulted in the following coefficient matrix A,

$$\textbf{4B.} \quad A = \begin{bmatrix} 1 & 1 & 1 \\ 0.04 & 0.54 & 0.26 \\ 0.93 & 0.24 & 0 \end{bmatrix}$$

Estimate the Dominant eigen value and Dominant eigen vector using Power method

5B. One dimensional transient heat conduction is taking place in a large flat steel plate of 3 cm thickness. If the plate is initially kept at 15°C and it is assumed that heat transfer is significant only in the <i>x</i> -direction, find the temperatures after 1 second if $\Delta x = 0.5$ cm if left and right faces are maintained at 50°C and 75°C respectively at any instant of time. Given thermal diffusivity of steel 1.88*10 ⁻⁵ m ² /s. Use implicit method	5A.	Discuss the Convergence and Algorithm to solve a non-linear equation using Newton-Raphson method	6+4
	5B.	One dimensional transient heat conduction is taking place in a large flat steel plate of 3 cm thickness. If the plate is initially kept at 15°C and it is assumed that heat transfer is significant only in the <i>x</i> - direction, find the temperatures after 1 second if $\Delta x = 0.5$ cm if left and right faces are maintained at 50°C and 75°C respectively at any instant of time. Given thermal diffusivity of steel 1.88*10 ⁻⁵ m ² /s. Use implicit method	10

14

6