Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

V SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: MASS TRANSFER-II [CHE 309]

REVISED CREDIT SYSTEM (03/12/2016)

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL questions.
- ✤ Missing data may be suitable assumed.

	100 local/local for the contract of the second (A) and the second (D) is first						
1A.	100 kmol/hr of feed having 65 mole % of benzene (A) and toluene (B) is flash vaporized at 1 atm. Calculate the composition of residue α is constant at 2.2; Data : H_F = 4000 kJ/kmol Q=1000 MJ/kmol/hr, H_D = 20000 KJ/kmol and H_W = 7000 kJ/kmol						
1B	Calculate the bubble and dew point of the solution and its composition at 3 atm.Log (P)= A-(B/(C+T))P is mm Hg, T ^{0}C ComponentcompositionABCn-Pentane (A)0.36.876321075.78233.205n-Hexane (B)0.56.910581189.64226.28n-Octane (C)0.26.893861264.37216.64	10					
1C.	Briefly explain the steam distillation						
2.	A dilute aq. solution of Ethanol is to be concentrated from 30% to 80% in a tray tower at atmospheric pressure. The feed rate is 200 Kmoles/hr with an enthalpy of 20000 KJ/Kmol. The bottom product must not contain more than 3.5 % Ethanol (all are in mole %). Determine Minimum reflux ratio and Calculate the condenser and reboiler heat loads at minimum reflux ratio for the partial condenser. The enthalpy and concentration and equilibrium data (mole %) are given below H is in KJ/kmol, x,y are in mole %. $\overline{x,y}$ 00.08910.2070.370.4770.7791 $\overline{H_L}$ 7540688070977750810589459523 $\overline{H_V}$ 48150483004843648450486314895048990						
3A.	Briefly explain the following i) Extractive distillation ii) Azeotropic distillation with examples						
3B.	Briefly describe the atleast four important properties required for good solvent in LLE						
3C.	Derive the operating line equation of absorption section in McCabe Thiele method						

	A solution is continuously and counter-currently extracted at the rate of 2.5 kg/s							
	(Feed contains 50% water (A), 48% pyridine (C) and 2% chlorobenzene (B)) with							
	chlorobenzene (contains 2% pyridine) to reduce the pyridine concentration to 5%.							
	(Triangular coordinates)							
	i) Determine the minimum solvent rate required for this separation.							
	ii) Determine the minimum solvent rate for half the feed rate $(F=1.25 \text{ kg/s})$							
4.	Pyridine	Chloro-benzene	Water	Pyridine	Chloro-benzene	water	20	
	0	99.95	0.05	0	0.08	99.92		
	11.05	88.28	0.67	5.02	0.16	94.82		
	24.1	74.28	1.62	18.9	0.38	80.72		
	28.6	69.15	2.25	25.5	0.58	73.92		
	35.05	61	3.95	44.95	4.18	50.87		
	40.6	53	6.4	53.2	8.9	37.9		
	49	37.8	13.2	49	37.8	13.2		
5A.	Explain the types of modules used in membrane separations? (atleast three)							
	Explain various types of equilibrium diagrams encounter in Leaching with diagram						6	
5B.								
	Explain the effect of temperature on leaching (atleast two important points)							
5C.	Give the component and complete balance in Leaching (all three components)							
6A	Briefly explain the system of two liquids and ne solid with example in LLE							
	A solution is prepared by dissolving 35.0 g of haemoglobin in enough water to make							
	up 1.00 L in volume. The osmotic pressure of the solution is found to be 10.0 mmHg							
6B	at 25.0 °C. Calculate the molar mass of haemoglobin.							
	Devilsin heisfler som stig mensenne meterstade og fille stadieter						5	
	Explain briefly osmotic pressure, retentate, permeate, flux, retention factor, transmembrane pressure							
	Give complete mole, component, energy balance equations of continuous distillation							
6C.	column with partial condenser							
	-							
	State Raoults law and prove that $\alpha_{AB} = P_A/P_B$, where $\alpha_{AB} =$ is relative volatility and P_A ,							
	P _B are saturated vapor pressure of A and B (Where A is more volatile component)							