Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

V SEMESTER B.TECH. (CHEMICAL ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: MASS TRANSFER-II [CHE 3101]

REVISED CREDIT SYSTEM (03/12/2016)

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL questions.
- ✤ Missing data may be suitable assumed.

	100.1 1/1 - C - C - C - C - C - C - C - C - C -						
1 A .	100 kmol/hr of feed having 65 mole % of benzene (A) and toluene (B) is flash vaporized at 1 atm. Calculate the composition of residue α is constant at 2.2; Data : H_F = 4000 kJ/kmol Q=1000 MJ/kmol/hr of feed H_D = 20000 KJ/kmol and H_W = 7000 kJ/kmol						
1B.	Calculate the bubble and dew point of the solution and its composition at 3 atm.Log (P)= A-(B/(C+T)), P is in mm Hg, T is ^{0}C ComponentcompositionABCn-Pentane (A)0.36.876321075.78233.205n-Hexane (B)0.56.910581189.64226.28n-Octane (C)0.26.893861264.37216.64	10					
1 C .	Briefly explain the steam distillation						
2.	A dilute aq. solution of Ethanol is to be concentrated from 30% to 80% in a tray tower at atmospheric pressure. The feed rate is 200 Kmoles/hr with an enthalpy of 20000 KJ/Kmol. The bottom product must not contain more than 3.5 % Ethanol (all are in mole %). Determine Minimum reflux ratio and Calculate the condenser and reboiler heat loads at minimum reflux ratio for partial condenser. The enthalpy and concentration and equilibrium data (mole %) are given below H is in KJ/kmol, x,y are in mole %. $\frac{x,y 0 0.0891 0.207 0.37 0.477 0.779 1}{H_L 7540 6880 7097 7750 8105 8945 9523}{H_V 48150 48300 48436 48450 48631 48950 48990}$						
3A.	Briefly explain the following i) Extractive distillation ii) Azeotropic distillation with examples						
3B.	Briefly describe the atleast four important properties required for good solvent in LLE						
3C.	Derive the operating line equation of absorption section in McCabe Thiele method						

	A solution is continuously and counter-currently extracted at the rate of 2.5 kg/s							
	(Feed contains 50% water (A), 48% pyridine (C) and 2% chlorobenzene (B)) with chlorobenzene (contains 2% pyridine) to reduce the pyridine concentration to 5%.							
	(Triangular coordinates)							
	i) Determine the minimum solvent rate required for this separation.							
	ii) Determine the minimum solvent rate for half the feed rate $(F=1.25 \text{ kg/s})$							
	Pyridine	Chloro-benzene	Water	Pyridine	Chloro-benzene	water	20	
4.	0	99.95	0.05	0	0.08	99.92		
	11.05	88.28	0.67	5.02	0.16	94.82		
	24.1	74.28	1.62	18.9	0.38	80.72		
	28.6	69.15	2.25	25.5	0.58	73.92		
	35.05	61	3.95	44.95	4.18	50.87		
	40.6	53	6.4	53.2	8.9	37.9		
	49	37.8	13.2	49	37.8	13.2		
5A.	Explain the types of modules used in membrane separations? (atleast three)							
	Explain various types of equilibrium diagrams encounter in Leaching with diagram							
5B.								
	Explain the effect of temperature on leaching (atleast two important points)							
5C.	Give the component and complete balance in Leaching (all three components)							