

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

V SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: TRANSPORT PHENOMENA [CHE 3103]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitably assumed.

1A.	Explain the different types of fluids; describe the behavior of different types of Non-Newtonian fluids with specific examples.	6M
1 B .	State and describe Newton's law of viscosity	5M
1C.	A Newtonian fluid with viscosity 10cp is placed between two large parallel plates, the distance between the plate is 4mm, the lower plate is pulled in the +ve x-direction with a force of 0.5N and the upper plate is pulled in the –ve x-direction with a force of 2N, each plate has an area of $2.5m^2$. if the velocity of the lower plate is 0.1 m/s Calculate i) Steady state momentum flux ii) velocity of the upper plate iii) repeat part i) and ii) for a Newtonian fluid with viscosity 1 cp.	9M
2A.	Consider the flow of steady state laminar incompressible fluid along an inclined flat plate which is at an angle β from the vertical, the film thickness over flat plate is δ and the fluid is moving with a velocity V. Develop an equation for velocity distribution using shell balance and from this find out i) Maximum velocity ii) Average velocity. iii) Volumetric flow rate.	15M
2B.	An oil has a kinematic viscosity of $2x10^{-4}$ m ² /s and density of $0.8x10^{3}$ kg/m ³ , if we want to have a falling film of thickness 2.5mm vertical wall, what should the mass rate flow of the liquid be ?.	5M
3A.	Derive the expression for temperature profile in the rectangular fin with its ends insulated. State assumptions for it.	15M
3B.	Thermocouple in a cylindrical well inserted into a gas stream, estimate the true temperature of gas stream if thermocouple junction (wall) temperature 260° C, pipe wall temperature is 176.7° C, h= $681.36 \text{ w/m}^{2 \circ}$ C, K = $103.8 \text{ w/m}^{\circ}$ C, B= $2.032 \times 10^{-3} \text{ m}$ L= 0.06096 m.	5M

	Reg. No.	
ANS IN	MANIPAL INSTITUTE OF TECHNOLOG MANIPAL A Constituent Institution of Manipal University	Y
4.	Derive an expression for diffusion through a spherical shell of radius 'r ₁ ' and gas film radius 'r ₂ ' to get concentration profile and molar flux. a) When there is no temperature change between spherical surface and gas film. b) Extend this result to describe the diffusion in Non-isothermal film in which the temperature changes with distance according to the following relation $\frac{T}{T_1} = \left(\frac{r}{r_1}\right)^n$ Where T ₁ is at temperature r ₁ . Assume as rough approximation that D _{AB} , varies as 3/2 power of temperature $\frac{D_{AB}}{D_{AB1}} = \left(\frac{T}{T_1}\right)^{3/2}$	20M
5A.	Derive the equation of continuity from the concept of mass conservation.	6M
5B.	Establish Navier-Stokes equation from the fundamental momentum balance.	14M