

MANIPAL INSTITUTE OF TECHNOLOGY

V SEMESTER B.TECH. (CIVIL ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: ELEMENTS OF EARTHQUAKE ENGINEERING [CIE 3105]

REVISED CREDIT SYSTEM (05/12/2016)

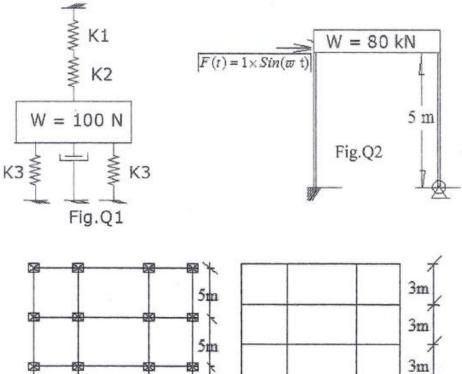
Time: 3 Hours

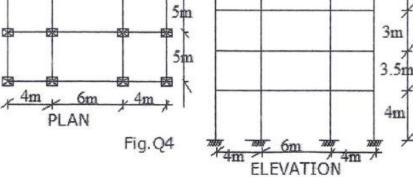
MAX. MARKS: 50

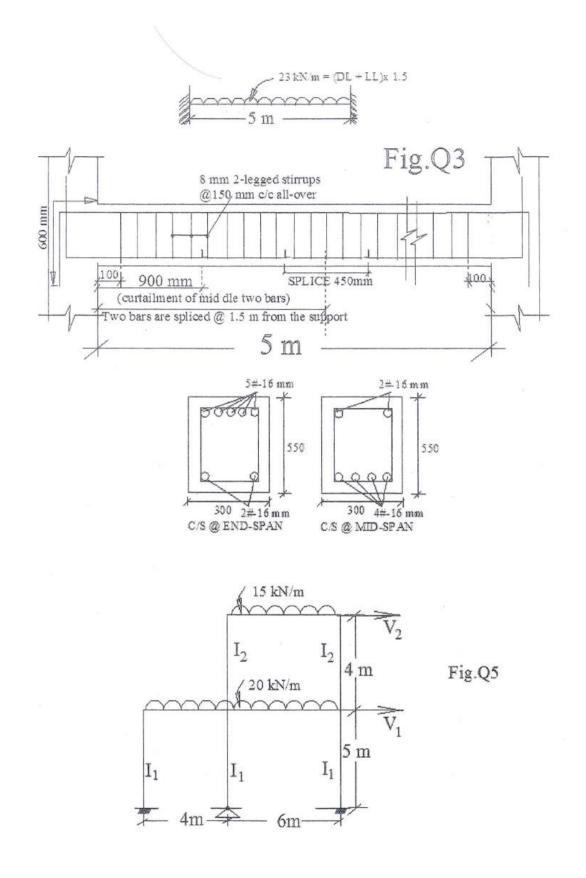
Instructions	to C	Candio	dates:
--------------	------	--------	--------

- ✤ Answer ALL the questions.
- ◆ Use of Code books, IS 13920:1993 & IS1893 (part-l)-2002 is allowed.
- ✤ Missing data may be suitable assumed.

1A.	Explain with the help of a neat diagram, the different types of seismic waves	4	CO1
1B.	 For the SDOF system shown in fig. Q1, K₁=10 N/m, K₂= 20 N/m, K₃= 25N/m determine i) Natural frequency and time period in seconds ii) Value of damping coefficient, if the displacement amplitude reduces from 3mm at first cycle to 2.17 mm at second cycle. 	6	CO2
2A.	The mass of SDOF system is subjected to dynamic forces of P0 Sin ωt . Allowing for viscous damping, obtain an expression for steady state vibration	5	CO2
2B.	 The steel frame (each leg having, E = 200 kN/mm² & Ixx = 3x10⁷ mm⁴) shown in Fig.Q2, supports a rotating machine, which exerts a horizontal force at the girder level, F(t) = Sin (5.3 t) kN. Assuming 5% of critical damping determine, i) Steady-state amplitude of vibration ii) Maximum dynamic stresses in the column if the effective depth of the column is 180 mm. Assume the girder is rigid. 	5	CO2
3A.	 Explain the possible reasons for the following clauses mentioned in IS 13920-1993, i) Clause 6.1.2: The flexural member shall preferably have width- to depth ratio of more than 0.3 ii) Clause 6.2.2: The maximum steel ratio on any face at any flexural member section, shall not exceed pmax = 0.025 iii) Clause 7.3.3: The spacing of hoops shall not exceed half the least lateral dimension of the column. 	3	CO3
3B.	The Fig.Q3 shows reinforcement detail of a fixed beam of span 5 m. Check the adequacy of detailing of reinforcement as per IS 13920: 1993. Comment on all the checks that need to be done. Clear cover to reinforcement is 25 mm. Grade of concrete M25, Grade of steel Fe 415. Calculate the design shear force as per 6.3.3 (b). Moment of resistance of the beam section @ mid span = 137 kNm and @ end span = 162 kNm.	7	CO3


Reg. No.




MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL

	ALED BY A Constituent Institution of Manipal University		
	A Five storied (G+4) RCC framed hospital building with live load of 3.5 kN/m^2		
	is to be constructed in Patna. The Fig.Q4 shows plan and elevation of the,		
	structure. Work out seismic forces on the structure. All beams and columns may	10	
4A.	4A. be assumed to be 300 mm x 500 mm and 400 x 500 mm respectively. The roof		
	and floor slabs may be assumed to be 130 mm thick. The walls of 200 mm thick		
	are present on all floor beams. The soil below the foundation is assumed to be		
	medium soil. Draw seismic shear force diagram.		
	Explain with the help of neat diagrams,		
5 4	i) The concept of base isolation to reduce earthquake effects on buildings.	6	CO1
5A.	ii) Short columns are more damaged during earthquake as compared to	Ū	COI
	taller columns in the same story		
5B.	Formulate the equation of motion from the basics in matrix form for the	4	CO3
	structure shown in Fig.Q5. Take (E $ _1$) = 350 kN-m ² and (EI2) = 150 kN-m ² .	•	005

