Reg. No.					

V SEMESTER B.TECH. (COMPUTER AND COMMUNICATION ENGINEERING)

MAKE UP EXAMINATIONS, DEC 2016

SUBJECT: FUNDAMENTALS OF ALGORITHM ANALYSIS AND DESIGN (ICT 3151)

(REVISED CREDIT SYSTEM)

(27/12/2016)

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates:

• Answer **ALL** the questions

• Missing data may be suitably assumed.

1A. 1B.	Find MaxClique for the graph given in Figure Q.1A using Backtracking algorithm. Consider 3 items with profits [25,24,15], weights [18,15,10] and capacity of the knapsack as 30. Find the optimal packing of knapsack using Greedy technique with all the possible greedy criteria.							
1C.	What is the Principle of optimality? Explain with an example.							
2A.	Find all pairs shortest paths for the graph given in Figure Q.2A using Dynamic programming technique.							
2B.	Perform average case time complexity analysis for Quick Sort.	3						
2C.	Compare Backtracking and Branch and Bound algorithm design techniques.							
3A.	Find the optimal tour for traveling salesperson using Branch and Bound technique for the graph shown in Figure Q.3A.							
3B. 3C.	Define Asymptotic notations O, Ω , θ and prove that $\frac{1}{2}n(n-1) \in \theta(n^2)$ What is P and NP-complete problems.							
4A. 4B.	Write Kruskal's and Prim's algorithms. Also specify Greedy criteria used. Using component labeling algorithm find the components in the graph given in Figure Q.4B.							
4C.	Arrange the following functions in the increasing order of growth.	2						
	i) $\log(n!)$ ii) $n \log n$ iii) $\sqrt{\log n}$ iv) $(\log n)!$							
5A.	Using the Divide and Conquer strategy, write an algorithm for finding the closest pair of	5						

ICT 3151 Page 1 of 2

n given points. Analyse the time complexity of the same.

- **5B.** Write a recursive algorithm for sequential search. Find the space and time complexity for the same.
- **5C.** Represent undirected weighted graph using an Abstract Data Type.

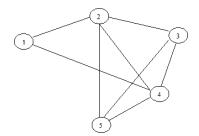


Figure Q.1A

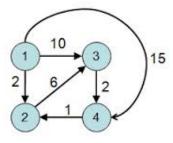


Figure Q.2A

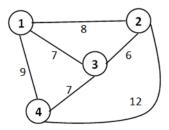


Figure Q.3A

3

2

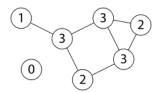


Figure Q.4B

ICT 3151 Page 2 of 2