Reg. N	ю.
--------	----

MANIPAL INSTITUTE OF TECHNOLOGY

V SEMESTER B.TECH. (COMPUTER AND COMMUNICATION ENGINEERING)

MAKE UP EXAMINATIONS, DEC 2016

SUBJECT: FUNDAMENTALS OF ALGORITHM ANALYSIS AND DESIGN (ICT 351)

(REVISED CREDIT SYSTEM)

(27/12/2016)

Instructions to candidates:	
• Answer ANY FIVE FULL the questions	
• Missing data may be suitably assumed.	

1A. 1B.	Find MaxClique for the graph given in Figure Q.1A using Backtracking algorithm. Consider 3 items with profits [25,24,15], weights [18,15,10] and capacity of the knapsack as 30. Find the optimal packing of knapsack using Greedy technique with all the possible	5 3
	greedy criteria.	
1C.	What is the Principle of optimality? Explain with an example.	2
2A.	Find all pairs shortest paths for the graph given in Figure Q.2A using Dynamic program- ming technique.	5
2B.	Perform average case time complexity analysis for Quick Sort.	3
2C.	Compare Backtracking and Branch and Bound algorithm design techniques.	2
3A.	Find the optimal tour for traveling salesperson using Branch and Bound technique for the graph shown in Figure Q.3A.	5
3B.	Define Asymptotic notations O, Ω , θ and prove that $\frac{1}{2}n(n-1) \in \theta(n^2)$	3
3C.	What is P and NP-complete problems.	2
4A.	Write Kruskal's and Prim's algorithms. Also specify Greedy criteria used.	5
4B.	Using component labeling algorithm find the components in the graph given in Figure Q.4B.	
4C.	Arrange the following functions in the increasing order of growth.	2
	i)log(n!) ii)n log n iii) $\sqrt{\log n}$ iv)(log n)!	

5A. Using the Divide and Conquer strategy, write an algorithm for finding the closest pair of 5 n given points. Analyse the time complexity of the same.

- **5B.** Write a recursive algorithm for sequential search. Find the space and time complexity for 3 the same.
- **5C.** Represent undirected weighted graph using an Abstract Data Type.
- **6A.** How performance of an algorithm is analyzed? Explain different ways analyzing time 5 complexity with an example.
- **6B.** Justify that Machine scheduling is an optimization problem. Also write greedy criterion 3 to solve the problem.
- **6C.** Write a recurrence relation for analyzing time complexity of binary search. Solve it using 2 substitution method.

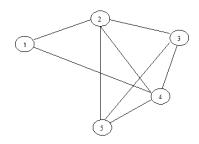
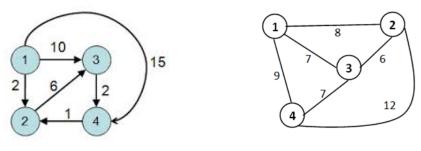



Figure Q.1A

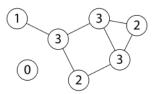


Figure Q.4B

2