Reg. No.	
----------	--

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKEUP EXAMINATIONS, DEC 2016 - JAN 2017

SUBJECT: COMMUNICATION SYSTEMS [ELE 3103]

REVISED CREDIT SYSTEM

Time:	3 Hours Date: 31 December 2016	Max. Marks: 50	
Instructions to Candidates:			
	❖ Answer ALL the questions.		
	Missing data may be suitably assumed.		
1A.	A signal V_i = 10 cos2000 π t + 0.05 cos200 π t is amplitude modulated by a s modulator. The non-linear device has the input-output characteristics Vo = V The output of the square law device is passed through a BPF with frequency Hz to 1300Hz. Sketch the amplitude spectrum of the band pass filter output signals.	i +0.01Vi ^{2.} range 700	
1B.	A signal $X_c(t) = 5 \left[1 + 2\cos 2\pi f_m t\right] \cos 2\pi f_c t$ is to be demodulated. Check wheth the following detectors can be used to demodulate: (i) an envelope detectorherent detector. Justify your answer.		
1 C.	For an AM super heterodyne receiver has a local oscillator frequency of Determine the IF carrier upper side frequency and lower side frequency for a that is made up of a carrier, upper and lower side frequencies of 900KHz, 90 895KHz respectively.	n RF wave	
2A.	Briefly describe the generation of DSBSC AM wave generation with neat bloc and mathematical expressions.		
2B.	Let $\cos(2\pi fct + \emptyset)$ denote the local carrier applied to the product modula demodulator .Show the effect of the phase error \emptyset in the coherent detector of		
2C.	Discuss in detail about the transmitter and receiver of BPSK scheme with block	k diagram. 4	
3A.	Explain the system for obtaining flat top PAM modulated signal and the remessage signal from the PAM signal with mathematical expressions.	ecovery of	
3B.	Assume an analog message signal is limited in its excursions to the range from volts. If the step size is 1 volts and each quantization levels & corresponding located at -3.5 (0), -2.5(1), -1.5(2), -0.5(3), 0.5(4), 1.5(5), 2.5(6), 3.5(7) volts the Manchester encoded form of the PCM output for the given sample values.	codes are	
	Sample value: 1.3 3.6 2.3 0.7 -0.7 -2.4 -3.4	3	
3C.	In an indirect WBFM generator, the initial low frequency carrier is 200KHz. The frequency deviation at the modulator=25Hz, Max frequency deviation Transmit carrier frequency= 102.4MHz, reference frequency applied to =7.024MHz. Choose the appropriate multiplier values for the circuit.	n =75KHz,	

ELE 3103 Page 1 of 2

4A. Consider the transmitted signal for a QPSK scheme as ,

$$si(t) = \left\{ \sqrt{\frac{2E}{T}} cos \left(2\pi f_c t + (2i - 1) \frac{\pi}{4} \right) \right\}$$

- a) Find the set of orthonormal basis functions to represent this set of signals.
- b)Obtain the signal coordinates with i=1,2,3,4, and then draw the signal constellation diagram
- 3
- **4B.** Evaluate the probability of error for sending 0 and receiving 1 in the ASK scheme
- 3

- **4C.** Consider the signal shown in figure Qn.4C
 - a) Plot the matched filter output as a function of time.
 - b) Determine the peak value of output.

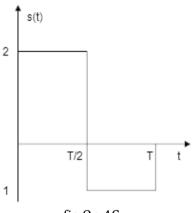


fig Qn.4C

- 4
- **5A.** For a convolutional encoder with n=2, k=1, K=3 and the generator polynomial coefficients (1 0 1) and (0 1 1), draw the convolutional encoder structure and obtain the complete trellis diagram upto 5 levels and then find the coded output for an input sequence (1 0 1 1 0) using the same.
- 4

5B. For a (4,2) systematic linear block code, the parity matrix P is

- a. For the message signal [10] compute the code word
- b. Decode the received signal r=[1111] by finding the location of error.
- 3
- **5C.** Write short note on co channel interference and adjacent channel interference in cellular communication
- 3