Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS NOV/DEC 2016

SUBJECT: COMMUNICATION SYSTEMS [ELE 3103]

DEVICED ODEDIT OVOTEM

		REVIS	SED CREDIT STSTEM		
Time:	3 Hours	Date:	29 November 2016	MAX. MAR	KS: 50
Instru	ctions to Candidates:				
	✤ Answer ALL the questions.				
	 Missing data may be suitable 	le assun	ned.		
1A.	Find the Fourier transform of the magnitude spectrum and h	the fun	ction shown in fig Q1A in terms of <i>sin</i> d the bandwidth.	c function. Plot	(03)
1B.	A square law device has an in constants, $e_1(t)$ is the input defined by $e_1(t) = A_c \cos 2\pi f_c t$ carrier wave. Evaluate the out filter to be tuned , in order to g	nput out voltage + m(t) put volta generate	put relation given by $e_0(t) = ae_1(t) + and e_0(t)$ is the output voltage. The i where m(t) is a message signal and A age $e_0(t)$. Specify the frequency at whice an AM signal.	$be_{1^{2}}(t)$. a, b are nput voltage is $c_{c}\cos 2\pi f_{c}t$ is the h the band pass	(03)
1C.	Two signals m ₁ (t) and m ₂ (t) m shown in fig Q1C. i. Sketch signal spectra a ii. Determine the minimu iii. Design a receiver to m point c.	need to t point c m bandw ecover s	be transmitted over a channel using a $\frac{1}{2}$. width of the channel. signals m ₁ (t) and m ₂ (t) from the mode	in arrangement ulated signal at	(04)
2A.	With necessary equations, eva	luate the	e bandwidth requirement for narrow ba	and FM.	(03)
2B.	Discuss the methods to improv	ve the sig	gnal to noise ratio in FM.		(03)
2C.	Prove the Interpolation formu from its sequences of sample v	la for rec alues.	constructing the original continuous tin	ne signal g(t)	(03)
3A.	Three low pass signals of bar division multiplexed using PA transmitted over a channel. i. Determine the maximu	ndwidth M. The T Im samp	20 KHz, 30 KHz and 40 KHz are san DM signal is passed through a low pass ling rate for each channel.	npled and time s filter and then	
3R	signal.		inel bandwidth required to transmit t	ne muluplexed	(02)
50.	i. Plot the matched filter ii. Determine the peak va	output a lue of ou	as a function of time. Itput.		(03)
3C.	Determine the probability of received. Hence find the proba binary data is transmitted us amplitude 1mV. Assume Noise	error for bility of sing ASK power s	r ASK scheme when bit 0 is transmitt error in terms of complementary error K over an AWGN channel at a rate 2. spectral density, NO/2 = 10^{-15} W/Hz.	ed and bit 1 is function when AMbps, carrier.	(05)
4A.	Consider the set of signals, s	(t) = 、	$\int_{\frac{T}{T}}^{\frac{2E}{T}} \cos(2\pi f_c t + i\frac{\pi}{4})$, $0 \le t \le T$ when	e i=1,2,3,4 and	
	$f_c=n_c$ /T for some fixed introduced constellation diagram by finding	eger n _{c.} ng the or	Plot the locations of s _i (t), i=1,2,3,4 rthonormal basis functions.	in the signal	(03)

- **4B.** Discuss the transmitter and receiver for BFSK scheme with block diagram.
- 4C. For a convolutional encoder with a rate equal to ½, Trellis is shown in figQ4C. If the received sequence is [1 1 0 0 0 0 1 1 1 0], determine the correct sequence using Viterbi decoding algorithm. Show the flow of algorithm. (04)
- **5A.** For a (7,4) systematic cyclic code with generator polynomial $g(x) = 1 + x^2 + x^3$, determine the code polynomial for the message block [1011]. (03)
- 5B. Consider a systematic (7,4) linear block code whose parity check equations are b1= m1⊕ m2⊕m4, b2=m1⊕m3⊕m4, b3=m1⊕m2⊕m3, b4=m1⊕m3⊕m4. Find the generator matrix and parity check matrix for this code.
- **5C.** Discuss the Handoff- strategies in wireless communications.

Fig Q4C

(03)

(03) (04)