Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKEUP EXAMINATIONS, DEC 2016 - JAN 2017

SUBJECT: DIGITAL SIGNAL PROCESSING [ELE 3102]

REVISED CREDIT SYSTEM

Time	e: 3 Hours Date: 29 D	ecember 2016	Max. Marks: 50
Instructions to Candidates:			
	 Answer ALL the questions. 		
	Missing data may be suitably assumed.		
	 DSP Quick reference table may be supplied. 		
1A.	Find 6point DFT of sequence $x[n] = \delta[n+1]$ -	$\delta[n] - 2\delta[n-2]$ using twiddle factor	or (03)
1B.	Consider an analog signal		
	$x_a(t) = 2\sin(200\pi t) + 3\sin(300\pi t) + 5\sin(700\pi t).$		
	(i) If the signal is sampled at the rate of 400 Hz, what is the discrete time signal obtained after sampling?		
	(ii) Illustrate aliasing if any.		
	(iii) What is the analog signal $y_a(t)$ that we interpolation?	can reconstruct from the samples if	we use ideal (03)
1C.	A linear shift invariant discrete-time system has a unit sample response of		
	$h[n] = \delta[n] - \delta[n-1]$		
	and the input signal to the system is $x[n] = \begin{cases} \\ \\ \\ \end{cases}$	$1 ; 0 \le n \le 9 forn: even$ -1; 0 \le n \le 9 forn: odd 0; otherwise	
	Determine the output response of system us length of 4.	sing Overlap and Add method. Take	e sub-frame (04)
2A.	Find 8-point DFT using DIF radix-2 FFT algorithm for a continuous-time signal $x[n] = \delta[n+3] + \delta[n+2] + 2\delta[n+1] + \delta[n] + \delta[n-1] + 2\delta[n-2] + \delta[n-3] + 0\delta[n-4]$		
	Show all intermittent values on the butterfly	diagram.	(06)
2B.	Find the IDFT of $Y[k] = X[k] ^2$ whe $x[n] = u[n] - u[n-5]$	re $X[k]$ is 8-point DFT of the	e sequence (04)

3A. Consider a causal linear time-invariant system whose system function is

$$H(z) = \frac{1 - \frac{1}{5}z^{-1}}{\left(1 - \frac{1}{2}z^{-1} + \frac{1}{3}z^{-2}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

Draw the Lattice-ladder structure. Also comment on the stability of the system based on the value of reflection coefficients (04)

3B. Certain FIR filter has zeroes at $z = e^{j\pi}$, $z = \frac{3}{4}e^{\pm j\frac{\pi}{3}}$ and $z = \frac{4}{3}e^{\pm j\frac{\pi}{3}}$.

Find system function. Is it linear phase filter?

- **3C.** Determine the coefficients of a filter with difference equation $y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2)$ such that it rejects completely a frequency component 100 Hz. The filter works at a sampling frequency of Fs=300 samples/sec. (03)
- **4A.** Find the constants a, b, and c for a given frequency response $H[\omega]$ of a linear phase FIR system.

Given:
$$H[0] = \frac{5}{4}$$
, $H\left[\frac{\pi}{2}\right] = 0$, $H[\pi] = -\frac{1}{4}$ and
 $y[n] = a x[n] + b x[n-1] + c x[n-2] + b x[n-3] + a x[n-4]$ (04)

- **4B.** Design a linear phase FIR high-pass filter using Hamming window, with a cutoff frequency, $\omega_c = 0.8\pi$ rad/sample and length of the filter = 7. Also plot the frequency response.
- 5A. Establish a relation between analog and digital frequency with reference to bilinear transformation and also show that for every point in z-plane there is exact corresponding point in s-plane and vice versa.(04)
- **5B.** A digital Butterworth low-pass filter is required to meet the following specifications:

Pass band ripple: $\leq 1 \ dB$ Pass band edge frequency: 0.33π rad Stop band attenuation: $\geq 40 \ dB$ Pass band edge frequency: 0.5π rad

The digital filter is to be designed by applying bilinear transformation on an analog system function. Take T=1 sec. (06)

(03)

(06)