Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: DIGITAL SIGNAL PROCESSING [ELE 3102]

DEVICED ODEDIT OVOTEM

		REVISED CREDIT STSTEM	
Time:	3 Hours	Date: 26 November 2016	MAX. MARKS: 50
Instru	ctions to Candidates:		
	✤ Answer ALL the questions.		
	 Missing data may be suitable assumed. 		
	 DSP quick – reference table i 	may be provided.	
1A.	1A. Find 4 – point DFT for a discrete – time signal obtained by sampling a continu-		
	signal $x(t) = \sin(4\pi Ft)$ with	$F = 60 Hz$ and sampling frequency $F_s = 960$	0 cycles/sec
	using radix – 2, DIT – FFT algor	ithm. Show all intermittent values on the butter	fly diagram. (04)
1B.	Consider an analog signal repre	esented as $x(t) = 20 \cos\left(40 \pi t - \frac{\pi}{3}\right) - 10 \cos\left(10 \pi t - \frac{\pi}{3}\right)$	0πt)
applied to a sampling and reconstruction system.		nstruction system.	
	(i) What value of minimum	n sampling rate F_s will ensure $y(t) = x(t)$?	
	(ii) How should F_s be chos	ten so that $y(t) = B + 20\cos\left(40\pi t - \frac{\pi}{3}\right)$?	
	(iii)What is the value of cor	istant B?	(03)
1C .	The 8-point DFT of sequence v	[n] = x[n] + jh[n] is	
	$V[k] = \{-2 + j3, 1 + j5, -4 +$	j7, 2+j6, -1-j3, -4-j2, 3+j8, j6	
	Without computing IDFT, deter	The second the second DFTs of $x[n]$ and $h[n]$.	(03)
2A.	Determine the output of a filter	whose impulse response is	
	$h[n] = \delta[n] - 2\delta[n-1] + \delta[n-1]$	2] and the input signal $x[n] = \begin{cases} \cos[2\pi n]; \ 0 \le n \\ 0 \qquad ; other \end{cases}$	n≤11 wise
	Use Overlap-save method. Take	e sub-frame length of 4.	(04)
2B.	Realize the given IIR filter using	g	
	i) Direct form – II ii) Parallel form structure		
	ii) Parallel lorin structure	$1 \pm z^{-1}$	
	$H(z) = \frac{1}{(1 - 0.5z^{-1})^2}$	$\frac{1+z}{(1-3z^{-1}+2z^{-2})}$	(03)
2C.	The reflection coefficients of a $K_3 = 0.3$. Obtain the system func	a 3 – stage FIR lattice structure are: $K_1 = 0.1$, lattice.	$K_2 = 0.2$, and (03)

3A. Determine the coefficients h(n) of a highpass linear phase FIR filter of length M = 4 which has an antisymmetric unit sample response h(n) = -h(M-1-n) and a frequency response that satisfies the condition

$$\left| H\left(\frac{\pi}{4}\right) \right| = \frac{1}{2} \quad and \quad \left| H\left(\frac{3\pi}{4}\right) \right| = 1$$
(03)

- **3B.** Design a FIR digital that will reject a very strong 50 Hz sinusoidal interference contaminating a 200 Hz useful sinusoidal signal. Determine the gain of the filter such that the filter does not change the amplitude of the useful signal. Assume sampling frequency $F_s = 500$ Hz. Draw the pole zero plot. Suggest the scheme to improve the performance of such filtering.
- **3C.** Determine a_1 , a_2 , c_1 and c_0 in terms of b_1 and b_2 so that the two systems shown in figure below are equivalent.

4A. List the differences between FIR and IIR filters.

- **4B.** Why ideal filters are non realizable filters? Give reasons.
- **4C.** Design a symmetric finite impulse response filter with desired frequency response

$$|H_{d}[e^{j\omega}]| = \begin{cases} 1; \text{ for } |\omega| \leq \frac{\pi}{4} \\ 0; \text{ otherwise} \end{cases}$$

Determine the coefficients of 4th order filter using Hanning window. Draw relevant filter **(05)** structure. Obtain its frequency response equation.

5A. The transfer function of an analog filter is given by

$$H(s) = \frac{2}{s+2}$$

Design a digital filter H[z] from H(s) using impulse invariance method. Use a sampling frequency of 1 Hz. Also, draw the pole – zero plot. (04)

5B. Design a Butterworth IIR filter that satisfies the following specifications:

$$0.75 \le |H[e^{j\omega}]| \le 1; \quad for \ 0 \le |\omega| \le 0.25\pi$$
$$|H[e^{j\omega}]| \le 0.23; \quad for \ 0.63\pi \le |\omega| \le \pi$$

Use bi-linear transformation technique. Take sampling frequency of 8 KHz. (06)

(03)

(02)

(04)