Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: LINEAR CONTROL THEROY [ELE 3101]

		REVISED CREDIT SYSTEM	
Time	: 3 Hours	Date: 24 November 2016	MAX. MARKS: 50
Instructions to Candidates:			
	 Answer ALL the questions Missing data may be suitable 		
	 Semi-log graph sheets shall 		
1A.	For the translation mechanical system shown in Figure Fig. Q1A.		
	(i) Draw mechanical network. (ii) Write down the dynamic equations that describe the		
	system (iii) Draw a block diagr	am representation, representing each eleme	nt by a block. (03)
1B.	Using block reduction technique reduce the given block diagram shown in Fig Q1B in its		
	simple form and obtain the equ	uivalent transfer function $\frac{C(s)}{R(s)}$	
		R(s)	(03)
1C.	Obtain the overall transfer function of a closed loop system represented by the signal flow		
	graph shown in Fig. Q1C using	mason s gain formula.	(04)
2A.	A unity feedback control syste	em (with positive feedback) is shown in Fig (02A. Using Routh-
	5	now many poles of closed loop system that l	• 0
	(ii) in LH plane (iii) on $j\omega$ axis	s. Also comment on stability of system.	(04)
2B.	For a unit step input closed loc	op control system shown in Fig Q2B, find the	values of K_1 and
	K_2 so that the peak overshoot	t is 25 % and peak time of 4 sec.	(03)
2C.	For a unity feedback system v	with open loop transfer function, $G(s) = \frac{1}{s^n}$	$\frac{1}{(s+\beta)}$, find the
	values of " n ", K and β in	order to meet the specifications of 10% σ	overshoot and the
	velocity error constant $K_v = 1$	00	(03)
3A.		nd obtain the Nyquist diagram by mappin	-
	contour to a $G(s)H(s)$ plane showing step by step procedure for a negative feedback		
	system with open loop transfer	r function, $G(s)H(s) = \frac{k}{s(s^2 + 4s + 10)}$.	
	Find the value of K for which	n (i) system is stable (ii) system is margina	lly stable (iii) the
	phase margin is 45° .		(05)

- **3B.** The open loop transfer function of a negative feedback system is, $G(s)H(s) = \frac{k}{s(s+1)(s^2+2s++5)}$ By step by step procedure draw the root locus plot for k > 0. Also determine the range of K for which (i) system is sable (ii) system is critically damped. (05)
- **4A.** The open loop transfer function of a negative feedback system is given by

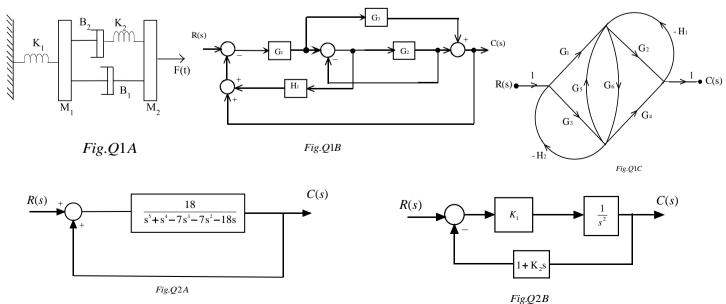
 $G(s)H(s) = \frac{2000}{s(s+10)(s+20)}$. Using Bode plot obtain (i) Gain margin and Phase margin (ii) the stability of the system (iii) steady state error (iv) the open loop gain for a G. M. of 24 dB. (05)

4B. The state model of an armature controlled D.C motor is given by

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -8 & -6 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t); \quad y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix}; \quad x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Where the state variables chosen are : $x_1(t) = \omega(t)$, the angular velocity of the motor shaft, and $x_2(t) = i_a(t)$, the armature current. Find (i) state transition matrix using Cayley-Hamilton Technique (ii) Find the unit step response y(t) of the system (05)

5A. An LTI single input single output system is described by the transfer function


$$\frac{Y(s)}{R(s)} = \frac{s^2 + 6s + 5}{s^3 + 5s^2 + 7s + 3},$$
 develop a state model in controllable canonical form. (03)

5B. Design a suitable controller to reduce the steady state error to zero for a unity feedback system with forward path transfer function $G(s) = \frac{K}{s(s+8)}$. The system is operating with an overshoot of 16%. (04)

5C. A linear system is described by following state equation

$$\dot{x} (\mathbf{t}) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t);$$

Find the state feedback gain matrix by Ackermann's formula for the system poles to be placed with a damping ratio of 0.707 and setting time of 1 sec. (03)

Page 2 of 2