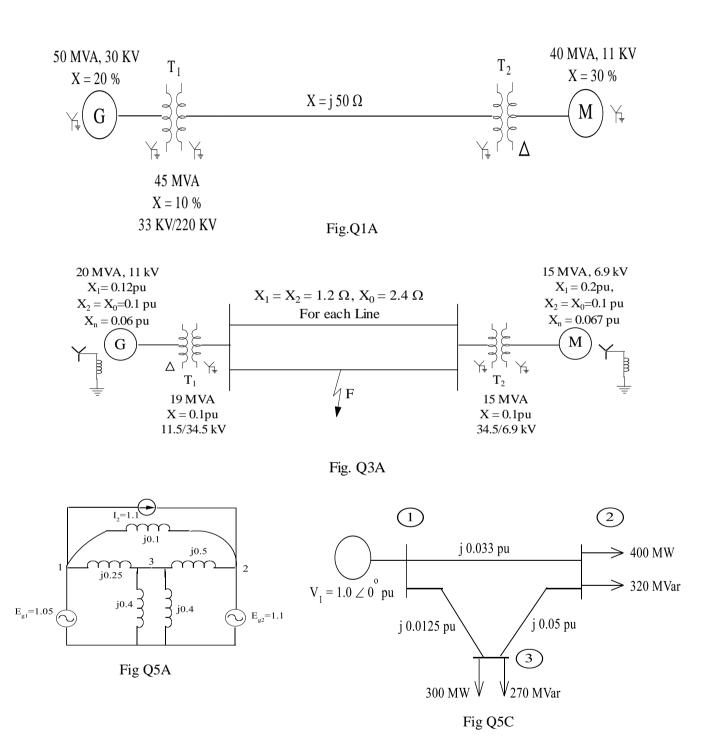

Reg. No.


V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS NOV/DEC 2016

SUBJECT: POWER SYSTEM ANALYSIS [ELE 3105]

		REVISED CREDIT SYSTEM		
Time: 3 Hours		Date: 03 December 2016	MAX. MARKS: 50	
Instru	ctions to Candidates:			
	 Answer ALL the questions Missing data may be suitable Graph sheets shall be support 	ble assumed.		
1A.	impedance diagram of the sys	a two machine system is as shown in Fig.Q stem choosing a base of 11.5 kV, 60 MVA in the as of 3 single phase units each rated 15 MVA, 1	motor circuit.	(07)
1B.	Define the following as applied	d to the rating of a Circuit Breaker:		
	(i) Momentary current and (ii) Mention suitable multiplicat respective symmetrical current	ion factors to determine the above currents	s in terms of	(03)
2A.	transformers rated 25 MVA, are linked by a transmission and motor are 15% each, t reactance is 12%. The motor 10.6 kV. When a symmetrica	nd synchronous motor both rated 25 MVA, 11/66 kV connected at their terminals. The two line operating at 66 kV. Subtransient reactance ransformers have leakage reactance of 10% is drawing 15 MW, 0.8 pf lagging with a term l three phase fault occurs at motor terminals, generator and motor. Hence obtain subtransie	o transformers e of generator each and line inal voltage of determine the	(05)
2B.		nd the magnitudes of the fault currents for L-G, actively. Determine the fault current for LLL-G fau		(05)
3A.		is receiving 12 MW at 0.8 pf lagging at a termin Ilt occurs at the middle of one of the lines. Deter rator rating as common base.	-	(07)
3B.	Derive expressions for the se unloaded generator.	equence components of the fault current for a	LL fault on an	(03)
4A.	generator has kinetic energy reactance is 0.4 pu. Each line	livers 20MW over a double circuit line to an in y of 2.52MJ/MVA at rated speed. The gener e has a reactance of 0.3 pu on a 20MVA base. ee phase fault occurs at the midpoint of one of th	ator transient Magnitudes of	
		.3 sec Step size = 0.05 sec. Assume fault is susta		(08)
4B.	Derive Swing equation of a infinite bus.	generator from fundamentals, swinging with	respect to an	(02)
5A.		ate node-3 in the network shown in Fig.Q5A figure represent voltages, currents and reactand		(03)
ELE 31	05		Pag	ie 1 of 2

- **5B.** Solve the equation $x^3 64 = 0$ using Newton Raphson method and x(0)=3. Show the calculations for two iterations.
- **5C.** The one line diagram of a power system is shown in Fig.Q5C. The transmission line reactances are marked on 100 MVA base. Using Gauss-Seidal method, determine the slack bus real and reactive power generation at the end of first iteration.

(02)