Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University FIFTH SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION - NOV/ DEC 2016 SUBJECT: VLSI DESIGN (ECE - 305)

TIME: 3 HOURS

Instructions to candidates

MAX. MARKS: 50

- Answer **any five full** questions.
- Missing data may be suitably assumed.
- Explain the transfer characteristic of the CMOS inverter showing different regions. For CMOS inverter, derive the expression for V_{inv}.
- 1B. Compare BJT and MOSFET with respect to following parameters:

(i) Transconductance value (ii) Input impedance (iii) Noise (iv) Current handling capability

1C. Discuss the influence of β_n/β_p on inverter DC transfer characteristic.

(5+3+2)

- 2A. Explain the steps involved in the twin-tub fabrication process. What is the use of epitaxial layer?
- 2B. Calculate the effective capacitance for the multi-layer structure given in FIG. 2B for 5 μm process.Refer the Table I for area capacitance calculation.
- 2C. Draw stick notation for [i] Depletion type pull-up NMOS inverter [ii] Single phase Pre-charge Evaluate Dynamic CMOS two-input NOR gate

(5+3+2)

- 3A. Derive Z_{pu}/Z_{pd} ratio for Pseudo NMOS inverter driven from a similar inverter.
- 3B. Explain the working of 6T SRAM cell.
- 3C. Find the region of operation for NMOS based circuits given in **FIG. 3C**. Assume $V_T = 0.4V$

(5+3+2)

4A. [i] The NMOS transistors in the circuit of **FIG. 4A** have $V_{thn} = 1 \text{ V}$, $\mu_n C_{ox} = 120 \ \mu\text{A/V}^2$ and $L_1 = L_2 = L_3 = 1 \ \mu\text{m}$. Find the required values of gate width for each of Q_1 , Q_2 and Q_3 to obtain the voltage and current values indicated.

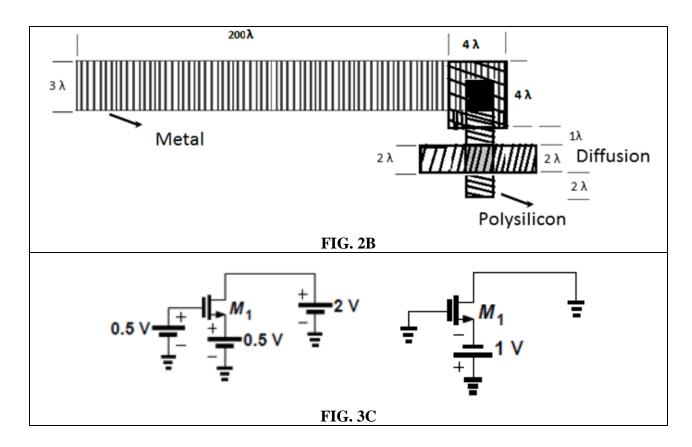
[ii] State the advantages of transmission gate over NMOS/PMOS pass transistors.

- 4B. Justify as why the NOR gate is preferred over NAND gate for the implementation of NMOS PLA.Explain with an example.
- ⁴C. Give the CMOS implementation and stick notation for the function Z = (A B + C)'.

(5+3+2)

ECE -- 305

Page 1 of 3


- 5A. Give the implementation of NMOS based R/2 stage shift register cell and explain the working principle. Give the stick notation and layout of the NMOS based R/2 stage shift register cell.
- 5B. With a truth table, give the NMOS implementation of NOR based SR latch

5C. Give the NMOS implementation of following functions: $F = \overline{AB\overline{C} + D}$ and $Y = A \odot B$.

(5+3+2)

- 6A Explain structured implementation of N-bit bus arbitration logic. Give the stick notation. Discuss the suitability of implementation using NMOS/ CMOS technology.
- 6B Give the implementation of two-input NOR gate using BiCMOS.
- 6C Give an account of different trends in VLSI technology.

(5+3+2)

	↓ 120µA M ₃ → +3.5 V M ₂ → +1.5 V M ₁ = G. 4A	
	conscitance	for 5 um tachnology
Table I Typical values of area Capacitance	Value in p	for 5 μ m technology pF × 10 ⁻⁴ / μ m ² values in brackets)
Table I Typical values of area	Value in p	$pF \times 10^{-4}/\mu m^2$
Table I Typical values of area Capacitance	Value in p (Relative)	$pF \times 10^{-4}/\mu m^2$ values in brackets)
Table I Typical values of areaCapacitanceGate to channel	Value in p (Relative 4	$bF \times 10^{-4}/\mu m^2$ values in brackets) (1.0) (0.25)
Table I Typical values of areaCapacitanceGate to channelDiffusion (active)	Value in p (Relative) 4 1	$bF \times 10^{-4}/\mu m^2$ values in brackets) (1.0) (0.25) (0.1)
Table I Typical values of areaCapacitanceGate to channelDiffusion (active)Polysilicon* to substrate	Value in p (Relative) 4 1 0.4	$bF \times 10^{-4}/\mu m^2$ values in brackets) (1.0) (0.25) (0.1) (0.075)
Table I Typical values of areaCapacitanceGate to channelDiffusion (active)Polysilicon* to substrateMetal 1 to substrate	Value in p (Relative) 4 1 0.4 0.3	$bF \times 10^{-4}/\mu m^2$ values in brackets) (1.0) (0.25) (0.1) (0.075) (0.05)