

## V SEMESTER B.TECH.(INFORMATION TECHNOLOGY) MAKEUP EXAMINATIONS, DECEMBER 2016

SUBJECT: DESIGN AND ANALYSIS OF ALGORITHMS [ICT 3107]

## REVISED CREDIT SYSTEM (27/12/2016)

Time: 3 Hours MAX. MARKS: 50

## Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitable assumed.

| 1A.         | Write a function for inserting an element into a sorted array and find its best, average and worst and case time complexity.                                                                          | 5 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1B.         | Write Kruskal's algorithm for finding minimum spanning tree and find its time complexity.                                                                                                             | 3 |
| 1C.         | Write an approximation algorithm for TSP and find its time complexity.                                                                                                                                | 2 |
| 2A.         | Find shortest path from vertex 1 to all other vertices in the graph shown in Figure Q.2A using Dijkstra's algorithm.                                                                                  | 5 |
| 2B.         | Using backtracking method solve the TSP problem shown in Figure Q.2B. Make use of appropriate bounding function.                                                                                      | 3 |
| 2C.         | With a suitable example prove the following :<br>i) $0 \le e \le n(n-1)$ (for directed graph)<br>ii) $\sum_{i=0}^{n} d_i = 2e$ (for undirected graph)                                                 | 2 |
| 3A.         | Create an AVL tree with the following elements. Show each insertion step clearly and find its time complexity.  100, 90, 80, 70, 150, 200, 250, 300, 50, 350, 75, 325                                 | 5 |
| 3B.         | Solve the following $0/1$ knapsack problem using greedy heuristics.<br>N = 4, $C = 15$ , $W = [12, 4, 7, 9]$ , $P = [45, 15, 35, 40]$                                                                 | 3 |
| 3C.         | Solve the following recurrence equation using substitution method. $T(n) = T(\sqrt{n}) + c$ , Assume $n = 2^k$ and $T(1) = T(2) = 1$                                                                  | 2 |
| 4A.         | Store the values given below in a hash table (size 13) using the hash function $H(x) = x \mod 13$ . Use double hashing technique to avoid the collision with the hashing function $H_2(x)=7-x \mod 7$ | 5 |
| 4B.         | 12, 78, 129, 46, 155, 233, 90, 59, 91<br>Write the steps involved in merge sort technique to sort elements and derive its time                                                                        | 5 |
| <b>+D</b> . | complexity.                                                                                                                                                                                           | 3 |
| 4C.         | What are NP problems? Prove that set of P problems is the subset of NP problems.                                                                                                                      | 2 |

ICT 3107 Page 1 of 2

**5A.** Find the optimal way to multiply  $A_1^*$   $A_2^*$   $A_3^*$   $A_4^*$   $A_5$  where  $A_1$ ,  $A_2$ ,  $A_3$   $A_4$  and  $A_5$  are matrices with order 5 x 9, 9 x 20, 20 x 10, 10 x 17 and 17 x 13 respectively.

5

3

**5B.** Apply quick sort technique by selecting pivot element as a median for the data given below. Also find its worst case time complexity.

15, 20, 5, 1, 50, 43, 18, 55, 60, 25, 14, 29

**5C.** Write a recurrence relation for finding time complexity of binary search and solve it. 2

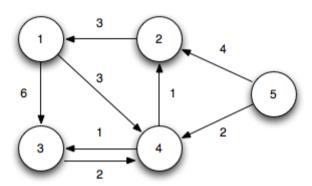



Figure Q.2A

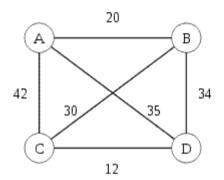



Figure Q. 2B

ICT 3107 Page 2 of 2